A glass fiber reinforced polyurethane foam (R-PUF), used for thermal insulation of liquefied natural gas tanks, was characterized to determine its compressive strength, modulus, and relaxation behavior. Compressive tests were conducted at different strain rates, ranging from 103s1 to 10s1 using a servohydraulic material testing system, and from 40s1 to 103s1 using a long split Hopkinson pressure bar (SHPB) designed for materials with low mechanical impedance such as R-PUF. Results indicate that in general both Young’s modulus and collapse strength increase with the strain rate at both room and cryogenic (170°C) temperatures. The R-PUF shows a linearly viscoelastic behavior prior to collapse. Based on time-temperature superposition principle, relaxation curves at several temperatures were shifted horizontally to determine Young’s relaxation master curve. The results show that Young’s relaxation modulus decreases with time. The relaxation master curve obtained can be used to convert to Young’s modulus at strain rates up to 103s1 following linearly viscoelastic analysis after the specimen size effect has been considered.

1.
Yuasa
,
K.
,
Uwatoko
,
K.
, and
Ishimaru
,
J.
, 2001, “
Key Technologies of Mitsubishi LNG Carriers-Present and Future
,”
Tech. Rev.-Mitsubishi Heavy Ind.
0026-6817,
38
, pp.
47
51
.
2.
Ishimaru
,
J.
,
Kawabata
,
K.
,
Morita
,
H.
,
Lkkai
,
H.
, and
Suetake
,
Y.
, 2004, “
Building of Advanced Large Sized Membrane Type LNG Carrier
,”
Tech. Rev.-Mitsubishi Heavy Ind.
0026-6817,
41
, pp.
1
7
.
3.
Cusdin
,
D. R.
, 1998, “
The Development of Liquefied Natural Gas Carriers—A Marine Engineering Success
,”
Transactions—Institute of Marine Engineers
,
110
, pp.
1
20
.
4.
Evangelista
,
J.
, 2005, Surveyor—A Quarterly Magazine From ABS, American Bureau of Shipping (ABS), Houston, TX, Fall 2005, pp. 32–36.
5.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1999,
Cellular Solids, Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
6.
Landro
,
D. L.
,
Sala
,
G.
, and
Olivieri
,
D.
, 2002, “
Deformation Mechanisms and Energy Absorption of Polystyrene Foams for Protective Helmets
,”
Polym. Test.
0142-9418,
21
, pp.
217
228
.
7.
Siegmann
,
A.
,
Kenig
,
S.
,
Alperstein
,
D.
, and
Narkis
,
M.
, 1983, “
Mechanical Behavior of Reinforced Polyurethane Foams
,”
Polym. Compos.
0272-8397,
4
, pp.
113
119
.
8.
Yosomiya
,
R.
, and
Morimoto
,
K.
, 1984, “
Compressive Properties of Glass Fiber Reinforced Rigid Polyurethane Foam
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321,
23
, pp.
605
608
.
9.
Morimoto
,
K.
,
Suzuki
,
T.
, and
Yosomiya
,
R.
, 1984, “
Flexural Properties of Glass Fiber Reinforced Rigid Polyurethane Foam
,”
Ind. Eng. Chem. Prod. Res. Dev.
0196-4321,
23
, pp.
81
85
.
10.
Yosomiya
,
R.
, and
Morimoto
,
K.
, 1985, “
Effect of Interaction Between Fiber and Matrix on Impact Properties of Glass Fiber Reinforced Rigid Polyurethane Foam
,”
Polym.-Plast. Technol. Eng.
0360-2559,
24
, pp.
11
26
.
11.
Cotgreave
,
T. C.
, and
Shortall
,
J. B.
, 1977, “
The Mechanism of Reinforcement of Polyurethane Foam by High-Modulus Chopped Fibers
,”
J. Mater. Sci.
0022-2461,
12
, pp.
708
717
.
12.
Cotgreave
,
T.
, and
Shortall
,
J. B.
, 1977, “
Failure Mechanisms in Fiber Reinforced Rigid Polyurethane Foam
,”
J. Cell. Plast.
0021-955X,
13
, pp.
240
244
.
13.
Kurek
,
K.
, and
Bledzki
,
A.
, 1994, “
Mechanical Behavior of Polyurethane and Epoxy Foam and Their Glass Fiber Composites
,”
Mech. Compos. Mater.
0191-5665,
30
, pp.
105
109
.
14.
Viot
,
P.
,
Beani
,
F.
, and
Lataillade
,
J. L.
, 2005, “
Polymeric Foam Behavior Under Dynamic Compressive Loading
,”
J. Mater. Sci.
0022-2461,
40
, pp.
5829
5837
.
15.
Saha
,
M. C.
,
Mahfuz
,
H.
,
Chakravarty
,
U. K.
,
Uddin
,
M.
,
Kabir
,
M. E.
, and
Jeelani
,
S.
, 2005, “
Effect of Density, Microstructure, and Strain Rate on Compression Behavior of Polymeric Foams
,”
Mater. Sci. Eng., A
0921-5093,
406
, pp.
328
336
.
16.
Subhash
,
G.
,
Liu
,
Q.
, and
Gao
,
X.
, 2006, “
Quasi-Static and High Strain Rate Uniaxial Compressive Response of Polymeric Structural Foams
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
1113
1126
.
17.
Song
,
B.
,
Chen
,
W.
,
Dou
,
S.
,
Winfree
,
N. A.
, and
Kang
,
J. H.
, 2005, “
Strain-Rate Effects on Elastic and Early Cell-Collapse Responses of a Polystyrene Foam
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
509
521
.
18.
Song
,
B.
,
Forrestal
,
M. J.
, and
Chen
,
W.
, 2006, “
Dynamic and Quasi-Static Propagation of Compaction Waves in a Low-Density Epoxy Foam
,”
Exp. Mech.
0014-4851,
46
, pp.
127
136
.
19.
Song
,
B.
,
Chen
,
W.
, and
Lu
,
W. Y.
, 2007, “
Compressive Mechanical Response of a Low-Density Epoxy Foam at Various Strain Rates
,”
J. Mater. Sci.
0022-2461,
42
, pp.
7502
7507
.
20.
Chen
,
W.
,
Lu
,
F.
, and
Winfree
,
N.
, 2002, “
High-Strain-Rate Compressive Behavior of a Rigid Polyurethane Foam With Various Densities
,”
Exp. Mech.
0014-4851,
42
, pp.
65
73
.
21.
Leventis
,
N.
, 2007, “
Three Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels
,”
Acc. Chem. Res.
0001-4842,
40
, pp.
874
884
.
22.
Luo
,
H.
,
Lu
,
H.
, and
Leventis
,
N.
, 2006, “
The Compressive Behavior of Isocyanate-Crosslinked Silica Aerogel at High Strain Rates
,”
Mech. Time-Depend. Mater.
1385-2000,
10
, pp.
83
111
.
23.
Luo
,
H.
,
Churu
,
G.
,
Fabrizio
,
E. F.
,
Schnobrich
,
J.
,
Hobbs
,
A.
,
Dass
,
A.
,
Mulik
,
S.
,
Zhang
,
Y.
,
Grady
,
B. P.
,
Capecelatro
,
A.
,
Sotiriou-Leventis
,
C.
,
Lu
,
H.
, and
Leventis
,
N.
, 2008, “
Synthesis and Characterization of the Physical, Chemical and Mechanical Properties of Isocyanate-Crosslinked Vanadia Aerogels
,”
J. Sol-Gel Sci. Technol.
0928-0707,
48
, pp.
113
134
.
24.
Morimoto
,
K.
,
Suzuki
,
T.
, and
Yosomiya
,
R.
, 1984, “
Stress Relaxation of Glass-Fiber-Reinforced Rigid Polyurethane Foam
,”
Polym. Eng. Sci.
0032-3888,
24
, pp.
1000
1005
.
25.
Zhang
,
Y.
, 2007, “
Characterization of the Compressive and Fracture Behavior, as Well as the Residual Tensile Strength of a Polyurethane Foam
,” MS thesis, Oklahoma State University, Stillwater, OK.
26.
Peters
,
W. H.
, and
Ranson
,
W. F.
, 1982, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng. (Bellingham)
0091-3286,
21
(
3
), pp.
427
432
.
27.
Sutton
,
M. A.
,
Wolters
,
W. J.
,
Peters
,
W. H.
,
Ranson
,
W. F.
, and
McNeil
,
S. R.
, 1983, “
Determination of Displacements Using an Improved Digital Image Correlation Method
,”
Image Vis. Comput.
0262-8856,
1
, pp.
133
139
.
28.
Lu
,
H.
, and
Cary
,
P. D.
, 2000, “
Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient
,”
Exp. Mech.
0014-4851,
40
, pp.
393
400
.
29.
Gray
,
G. T.
, 2000,
ASM Handbook 8: Mechanical Testing and Evaluation
,
ASM International
,
Materials Park, OH
, pp.
462
476
.
30.
Lu
,
H.
,
Vendroux
,
G.
, and
Knauss
,
W. G.
, 1997, “
Surface Deformation Measurements of a Cylindrical Specimen by Digital Image Correlation
,”
Exp. Mech.
0014-4851,
37
, pp.
433
439
.
31.
Knauss
,
W. G.
, and
Zhao
,
J.
, 2007, “
Improved Relaxation Time Coverage in Ramp-Strain Histories
,”
Mech. Time-Depend. Mater.
1385-2000,
11
, pp.
199
216
.
32.
Knauss
,
W. G.
,
Emri
,
I.
, and
Lu
,
H.
, 2008, “
Mechanics of Polymers: Viscoelasticity
,”
Handbook of Experimental Solid Mechanics
,
Sharpe
,
W. N.
, Jr.
, ed.,
Springer
,
New York
, pp.
49
95
.
33.
Ferry
,
J. D.
, 1970,
Viscoelastic Properties of Polymers
, 2nd ed.,
Wiley
,
New York
, pp.
292
346
.
34.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
, 1955, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
0002-7863,
77
, pp.
3701
3707
.
35.
Zhao
,
J.
,
Knauss
,
W. G.
, and
Ravichandran
,
G.
, 2007, “
Applicability of the Time–Temperature Superposition Principle in Modeling Dynamic Response of a Polyurea
,”
Mech. Time-Depend. Mater.
1385-2000,
11
, pp.
289
308
.
You do not currently have access to this content.