Abstract

Gallium-68 (68Ga) has played a relevant role for the novel studies in the nuclear medicine area. Its production has been made traditionally and initially using 68Ge/68Ga generators. These devices represent some flaws, namely, high costs, low activity per elution, and long-time waiting between elutions. In order to address these concerns, the cyclotron-based production of 68Ga has been recently investigated and has shown promising outcomes regarding the activity at the end of bombardment for both solid and liquid targets. Currently, the use of computational codes and theoretical calculations takes relevance when it comes to calculating relevant nuclear physics quantities such as the production yield and the ambient dose rate. These outcomes are important for having a proper understanding of all the reactions involved during an irradiation routine with protons on a target. In this work, we used important cad-based programs, Monte Carlo codes, and a deterministic calculator with the objective of making a full benchmark with a previous experimental research. We also calculated the shielding requirements for this kind of isotope production facility. The proposed shielding materials and their respective thickness showed to be sufficient to avoid high ambient dose rates outside the machine. For the production yield, we found out that a hybrid combination of Monte Carlo codes and subsequently a computation with a deterministic calculator gave us more precise results for the irradiation conditions considered here.

References

1.
Williams
,
C.
,
1975
, “
A Historical Sketch of the Discovery, Production, and Application of Radioisotopes
,”
Nucl. Technol.
,
27
(
1
), pp.
119
123
.10.13182/NT75-A15945
2.
Orteca
,
G.
,
Sinnes
,
J.-P.
,
Rubagotti
,
S.
,
Iori
,
M.
,
Capponi
,
P. C.
,
Piel
,
M.
,
Rösch
,
F.
,
Ferrari
,
E.
, and
Asti
,
M.
,
2020
, “
Gallium-68 and Scandium-44 Labelled Radiotracers Based on Curcumin Structure Linked to Bifunctional Chelators: Synthesis and Characterization of Potential Pet Radiotracers
,”
J. Inorg. Biochem.
,
204
, p.
110954
.10.1016/j.jinorgbio.2019.110954
3.
Jammaz
,
I. A.
,
Al-Otaibi
,
B.
,
Al-Hokbani
,
N.
, and
Okarvi
,
S.
,
2019
, “
Synthesis of Novel Gallium-68 Labeled Rhodamine: A Potential Pet Myocardial Perfusion Agent
,”
Appl. Radiat. Isot.
,
144
, pp.
29
33
.10.1016/j.apradiso.2018.09.009
4.
Garcia-Arguello
,
S. F.
,
Lopez-Lorenzo
,
B.
, and
Ruiz-Cruces
,
R.
,
2019
, “
Automated Production of [68ga]ga-Dotanoc and [68ga]ga-Psma-11 Using a Tracerlab Fxfn Synthesis Module
,”
J. Labelled Compd. Radiopharm.
,
62
(
3
), pp.
146
153
.10.1002/jlcr.3706
5.
Meisenheimer
,
M.
,
Saenko
,
Y.
, and
Eppard
,
E.
,
2021
, “
Gallium-68: Radiolabeling of Radiopharmaceuticals for Pet Imaging - a Lot to Consider
,”
Medical Isotopes
,
S. A. R.
Naqvi
, and
M. B.
Imrani
, eds.,
IntechOpen
,
Rijeka
, Chap. II.
6.
Lin
,
M.
,
Paolillo
,
V.
,
Ta
,
R. T.
,
Damasco
,
J.
,
Rojo
,
R. D.
,
Carl
,
J. C.
,
Melancon
,
M. P.
,
Ravizzini
,
G. C.
,
Le
,
D. B.
, and
Santos
,
E. B.
,
2020
, “
Fully Automated Preparation of 68ga-Psma-11 at Curie Level Quantity Using Cyclotron-Produced 68ga for Clinical Applications
,”
Appl. Radiat. Isot.
,
155
, p.
108936
.10.1016/j.apradiso.2019.108936
7.
Kumar
,
K.
,
2020
, “
The Current Status of the Production and Supply of Gallium-68
,”
Cancer Biother. Radiopharm.
,
35
(
3
), pp.
163
166
.10.1089/cbr.2019.3301
8.
Chakravarty
,
R.
, and
Chakraborty
,
S.
,
2021
, “
Production of a Broad Palette of Positron Emitting Radioisotopes Using a Low-Energy Cyclotron: Towards a New Success Story in Cancer Imaging?
,”
Appl. Radiat. Isot.
,
176
, p.
109860
.10.1016/j.apradiso.2021.109860
9.
Siikanen
,
J.
,
Jussing
,
E.
,
Milton
,
S.
,
Steiger
,
C.
,
Ulin
,
J.
,
Jonsson
,
C.
,
Samén
,
E.
, and
Tran
,
T. A.
,
2021
, “
Cyclotron-Produced 68ga From Enriched 68zn Foils
,”
Appl. Radiat. Isot.
,
176
, p.
109825
.10.1016/j.apradiso.2021.109825
10.
International Atomic Energy Agency
. “Production of Cyclotron-Based Gallium-68 Radioisotope and Related Radiopharmaceuticals,” accessed July 19, 2022, https://www.iaea.org/projects/crp/f22073
11.
Alnahwi
,
A. H.
,
Tremblay
,
S.
,
Ait-Mohand
,
S.
,
Beaudoin
,
J.-F.
, and
Guérin
,
B.
,
2020
, “
Automated Radiosynthesis of 68ga for Large-Scale Routine Production Using 68zn Pressed Target
,”
Appl. Radiat. Isot.
,
156
, p.
109014
.10.1016/j.apradiso.2019.109014
12.
Hall
,
A.
,
Gum
,
D. A.
,
Ferrieri
,
R.
,
Brockman
,
J.
, and
Bevins
,
J. E.
,
2020
, “
Development of an Experimentally Validated mcnp6 Model for 11c Production Via the 14n(p,α) Reaction Using a ge Pettrace Cyclotron
,”
Nucl. Technol.
,
206
(
7
), pp.
962
976
.10.1080/00295450.2020.1740561
13.
Baker
,
P. S.
,
Duncan
,
F. R.
, and
Love
,
L. O.
,
1960
, “
Cyclotron Targets Using Enriched Stable Isotopes
,”
Nucl. Sci. Eng.
,
7
(
4
), pp.
325
326
.10.13182/NSE60-A25725
14.
Green
,
F. L.
, and
Martin
,
J. A.
,
1960
, “
Maximizing Production of Radioisotopes in a Cyclotron
,”
Nucl. Sci. Eng.
,
7
(
4
), pp.
387
391
.10.13182/NSE60-A25733
15.
International Atomic Energy Agency
,
2008
, “
Cyclotron Produced Radionuclides: Principles and Practice
,” IAEA, Vienna, Austria, Reports No. 465.
16.
Engle
,
J.
,
Lopez-Rodriguez
,
V.
,
Gaspar-Carcamo
,
R.
,
Valdovinos
,
H.
,
Valle-Gonzalez
,
M.
,
Trejo-Ballado
,
F.
,
Severin
,
G.
,
Barnhart
,
T.
,
Nickles
,
R.
, and
Avila-Rodriguez
,
M.
,
2012
, “
Very High Specific Activity 66/68ga From Zinc Targets for Pet
,”
Appl. Radiat. Isot.
,
70
(
8
), pp.
1792
1796
.10.1016/j.apradiso.2012.03.030
17.
Takács
,
S.
,
Tárkányi
,
F.
, and
Hermanne
,
A.
,
2005
, “
Validation and Upgrading of the Recommended Cross-Section Data of Charged Particle Reactions: Gamma Emitter Radioisotopes
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
,
240
(
4
), pp.
790
802
.10.1016/j.nimb.2005.06.209
18.
Levkovski
,
V.
,
1991
,
Cross-section of medium mass nuclide activation (A = 40–100) by Medium Energy Protons and Alpha Particles (E = 10–50 MeV)
,
Inter-Vesi
,
Moscow, USSR
.
19.
Szelecsényi
,
F.
,
Boothe
,
T. E.
,
Takács
,
S.
,
Tárkányi
,
F.
, and
Tavano
,
E.
,
1998
, “
Evaluated Cross Section and Thick Target Yield Data Bases of zn+p Processes for Practical Applications
,”
Appl. Radiat. Isot.
,
49
(
8
), pp.
1005
1032
.10.1016/S0969-8043(97)10103-8
20.
Hille
,
M.
,
Hille
,
P.
,
Uhl
,
M.
, and
Weisz
,
W.
,
1972
, “
Excitation Functions of (p, n) and (α, n) Reactions on ni, cu and zn
,”
Nucl. Phys. A
,
198
(
2
), pp.
625
640
.10.1016/0375-9474(72)90713-0
21.
Howe
,
H. A.
,
1958
, “
(p, n) Cross Sections of Copper and Zinc
,”
Phys. Rev.
,
109
(
6
), pp.
2083
2085
.10.1103/PhysRev.109.2083
22.
Marmier Pierre
,
E.
,
1951
, “Fonctions d'excitation de la réaction, (pn)”. Phd thesis,
l'Ecole Polytechnique Fédérale
, Zurich, Switzerland. accessed July 19, 2022, https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/134223/eth-33567-01.pdf
23.
Würl
,
M.
,
2016
,
Towards Offline PET Monitoring at a Cyclotron-Based Proton Therapy Facility Experiments and Monte Carlo Simulations
,
Springer Fachmedien Wiesbaden
, Germany.
24.
Koning
,
A.
,
Hilaire
,
S.
, and
Goriely
,
S.
, TALYS-1.95 User Manual, 1st ed., IAEA, Vienna, Austria, accessed July 19, 2022 https://tendl.web.psi.ch/tendl_2019/talys.html
25.
AUTODESK
,
2002
Professional-Grade 3D CAD Software for Product Design and Engineering
,” AUTODESK, accessed date July 19, 2022 https://www.autodesk.com/products/inventor/overview#what-is-inventor
26.
Wu
,
Y.
,
Song
,
J.
,
Zheng
,
H.
,
Sun
,
G.
,
Hao
,
L.
,
Long
,
P.
, and
Hu
,
L.
,
2015
, “
CAD-Based Monte Carlo Program for Integrated Simulation of Nuclear System Supermc
,”
Ann. Nucl. Energy
,
82
, pp.
161
168
.10.1016/j.anucene.2014.08.058
27.
Koning
,
A.
,
Rochman
,
D.
,
Sublet
,
J.-C.
,
Dzysiuk
,
N.
,
Fleming
,
M.
, and
van der Marck
,
S.
,
2019
, “
Tendl: Complete Nuclear Data Library for Innovative Nuclear Science and Technology
,”
Nucl. Data Sheets
,
155
, pp.
1
55
.10.1016/j.nds.2019.01.002
28.
Battistoni
,
G.
,
Boehlen
,
T.
,
Cerutti
,
F.
,
Chin
,
P. W.
,
Esposito
,
L. S.
,
Fassò
,
A.
,
Ferrari
,
A.
,
Lechner
,
A.
,
Empl
,
A.
,
Mairani
,
A.
,
Mereghetti
,
A.
,
Ortega
,
P. G.
,
Ranft
,
J.
,
Roesler
,
S.
,
Sala
,
P. R.
,
Vlachoudis
,
V.
, and
Smirnov
,
G.
,
2015
, “
Overview of the Fluka Code
,”
Ann. Nucl. Energy
,
82
, pp.
10
18
.10.1016/j.anucene.2014.11.007
29.
Böhlen
,
T.
,
Cerutti
,
F.
,
Chin
,
M.
,
Fassò
,
A.
,
Ferrari
,
A.
,
Ortega
,
P.
,
Mairani
,
A.
,
Sala
,
P.
,
Smirnov
,
G.
, and
Vlachoudis
,
V.
,
2014
, “
The Fluka Code: Developments and Challenges for High Energy and Medical Applications
,”
Nucl. Data Sheets
,
120
, pp.
211
214
.10.1016/j.nds.2014.07.049
30.
Sato
,
T.
,
Iwamoto
,
Y.
,
Hashimoto
,
S.
,
Ogawa
,
T.
,
Furuta
,
T.
,
ichiro Abe
,
S.
,
Kai
,
T.
,
Tsai
,
P.-E.
,
Matsuda
,
N.
,
Iwase
,
H.
,
Shigyo
,
N.
,
Sihver
,
L.
, and
Niita
,
K.
,
2018
, “
Features of Particle and Heavy Ion Transport Code System (Phits) Version 3.02
,”
J. Nucl. Sci. Technol.
,
55
(
6
), pp.
684
690
.10.1080/00223131.2017.1419890
31.
Iwamoto
,
Y.
,
Sato
,
T.
,
Hashimoto
,
S.
,
Ogawa
,
T.
,
Furuta
,
T.
,
ichiro Abe
,
S.
,
Kai
,
T.
,
Matsuda
,
N.
,
Hosoyamada
,
R.
, and
Niita
,
K.
,
2017
, “
Benchmark Study of the Recent Version of the Phits Code
,”
J. Nucl. Sci. Technol.
,
54
(
5
), pp.
617
635
.10.1080/00223131.2017.1297742
32.
Vlachoudis
,
V.
,
2009
, “
Flair: A Powerful but User Friendly Graphical Interface for Fluka
,”
International Conference on Mathematics, Computational Methods & Reactor Physics (M&C 2009)
,
Saratoga Springs
, Vol. 176, May 3–7, pp.
790
800
.
33.
Friend
,
M. T.
,
Mastren
,
T.
,
Parker
,
T. G.
,
Vermeulen
,
C. E.
,
Brugh
,
M.
,
Birnbaum
,
E. R.
,
Nortier
,
F. M.
, and
Fassbender
,
M. E.
,
2020
, “
Production of 230pa by Proton Irradiation of 232th at the Lanl Isotope Production Facility: Precursor of 230u for Targeted Alpha Therapy
,”
Appl. Radiat. Isot.
,
156
, p.
108973
.10.1016/j.apradiso.2019.108973
34.
FLUKA User Forum,
2021
, “
Cyclotron-Based Production of Gallium-68
,” FLUKA User Forum, Online, accessed July 19, 2022, https://fluka-forum.web.cern.ch/t/cyclotron-based-production-of-gallium-68/2163
35.
International Atomic Energy Agency,
2021
, “
Experimental Nuclear Reaction Data
,” International Atomic Energy Agency, Online, accessed July 19, 2022, https://www.iaea.org/resources/databases/experimental-nuclear-reaction-data
36.
PHITS Forum,
2021
, “
Cyclotron-Based Production of Gallium-68
,” PHITS Forum, Online, accessed July 19, 2022, https://meteor.nucl.kyushu-u.ac.jp/phitsforum/t/topic/360/2
37.
Japan Atomic Energy Agency
. “PHITS Ver. 3.25 User's Manual,” Japan Atomic Energy Agency, Online, accessed July 19, 2022, https://phits.jaea.go.jp/index.html
38.
CERN,
2021
, “
Hadron Inelastic Nuclear Interactions
,” CERN, Online, accessed July 19, 2022, https://flukafiles.web.cern.ch/manual/chapters/quick_look/physics/hadron_inelastic.html#hadron-inelastic-nuclear-interactions
39.
Ferrari
,
A.
,
Sala
,
P. R.
,
Fass‘o
,
A.
, and
Ranft
,
J.
, “Fluka: A multi-particle transport code (Program version 2021)”CERN, Switzerland, accessed July 19, 2022, http://www.fluka.org/content/manuals/FM.pdf
40.
Koning
,
A.
,
Hilaire
,
S.
, and
Goriely
,
S.
, “TALYS-1.95 User Manual”, IAEA. Vienna, accessed July 19, 2022, https://tendl.web.psi.ch/tendl_2019/talys.html
41.
Spahn
,
I.
,
Steyn
,
G.
,
Nortier
,
F.
,
Coenen
,
H.
, and
Qaim
,
S.
,
2007
, “
Excitation Functions of Natge(p,xn)71,72,73,74as Reactions Up to 100 mev With a Focus on the Production of 72as for Medical and 73as for Environmental Studies
,”
Appl. Radiat. Isot.
,
65
(
9
), pp.
1057
1064
.10.1016/j.apradiso.2007.04.012
42.
Basile
,
D.
,
Birattari
,
C.
,
Bonardi
,
M.
,
Goetz
,
L.
,
Sabbioni
,
E.
, and
Salomone
,
A.
,
1981
, “
Excitation Functions and Production of Arsenic Radioisotopes for Environmental Toxicology and Biomedical Purposes
,”
Int. J. Appl. Radiat. Isot.
,
32
(
6
), pp.
403
410
.10.1016/S0020-708X(81)81007-1
43.
Horiguchi
,
T.
,
Kumahora
,
H.
,
Inoue
,
H.
, and
Yoshizawa
,
Y.
,
1983
, “
Excitation Function of ge(p,Xnyp) Reactions and Production of 68 ge
,”
Int. J. Appl. Radiat. Isot.
,
34
(
11
), pp.
1531
1535
.10.1016/0020-708X(83)90288-0
44.
Phillips
,
D. R.
, “Production of Selenium-72 and Arsenic-72,” Regents of University of California (Alameda), accessed July 19, 2022, https://www.osti.gov/biblio/869637
45.
Bakaç
,
M.
,
Taşoğlu
,
A. K.
, and
Uyumaz
,
G.
,
2011
, “
Modeling Radioactive Decay
,”
Procedia - Soc. Behav. Sci.
,
15
, pp.
2196
2200
.10.1016/j.sbspro.2011.04.079
46.
IAEA,
2018
,
Occupational Radiation Protection
, General Safety Guides No. GSG-7,
International Atomic Energy Agency
,
Vienna
.
47.
IAEA,
1988
,
Radiological Safety Aspects of the Operation of Proton Accelerators
,
International Atomic Energy Agency, International Atomic Energy Agency
,
Vienna
, Austria, Reports Series No. 283.
You do not currently have access to this content.