Abstract

In this study, the shielding parameters for isophorone diamine (IPDA) with different ratios of barite (BaSO4), boron carbide (B4C), and aluminum oxide (Al2O3) composites were theoretically investigated. The mass attenuation coefficients (μm) were calculated at the photon energy range (1 keV to 20 MeV) using the xcom program. The obtained data were used to calculate the linear attenuation coefficients (μ), relaxation lengths (λ), half value layer (HVL), and tenth value layer (TVL) for the same range of energy. For comparison, five other shielding materials, ordinary concrete, high-density polyethylene, borated polyethylene, lithium polyethylene, and water, were also studied. The macroscopic fast neutron removal cross-sections (R) were calculated for the selected composites. The obtained results show that the shielding parameters strongly depend on the photon energy, chemical composition, and density of the investigated materials. The dependence of mass attenuation coefficients and macroscopic fast neutron removal cross section on the chemical composition of the selected polymer composites was discussed. Barite composite is seen to be a good attenuating material; aluminum oxide composite is a reasonable attenuating behavior, while Boron composite shows a relatively weak attenuating properties. The results obtained through this work can be used to understand the behavior and shielding effectiveness of the selected polymer composites.

References

1.
Elmahroug
,
Y.
,
Tellili
,
B.
, and
Souga
,
C.
,
2014
, “
Determination of Shielding Parameters for Different Types of Resins
,”
Ann. Nucl. Energy
,
63
, pp.
619
623
.10.1016/j.anucene.2013.09.007
2.
Akman
,
F.
,
Sayyed
,
M. I.
,
Kacal
,
M. R.
, and
Tekin
,
H. O.
,
2019
, “
Investigation of Photon Shielding Performances of Some Selected Alloys by Experimental Data, Theoretical and MCNPX Code in the Energy Range of 81 keV-1333 keV
,”
J. Alloys Comp.
,
772
, pp.
516
524
.10.1016/j.jallcom.2018.09.177
3.
Sayyed
,
M. I.
,
Akman
,
F.
,
Geçibesler
,
I. H.
, and
Tekin
,
H. O.
,
2018
, “
Measurement of Mass Attenuation Coefficients, Effective Atomic Numbers, and Electron Densities for Different Parts of Medicinal Aromatic Plants in Low-Energy Region
,”
Nucl. Sci. Tech.
,
29
(
10
), pp.
1
10
.10.1007/s41365-018-0475-0
4.
Akman
,
F.
,
Geçibesler
,
I. H.
,
Sayyed
,
M. I.
,
Tijan
,
S. A.
,
Tufekci
,
A. R.
, and
Demirtas
,
I.
,
2018
, “
Determination of Some Useful Radiation Interaction Parameters for Waste Foods
,”
Nucl. Eng. Technol.
,
50
(
6
), pp.
944
949
.10.1016/j.net.2018.05.007
5.
Sayyed
,
M.
,
2016
, “
Bismuth Modified Shielding Properties of Zinc Boro-Tellurite Glasses
,”
J. Alloys Comp.
,
688
, pp.
111
117
.10.1016/j.jallcom.2016.07.153
6.
El-Mallawany
,
R.
,
Sayyed
,
M.
, and
Dong
,
M.
,
2017
, “
Comparative Shielding Properties of Some Tellurite Glasses: Part 2
,”
J. Non-Cryst. Solids
,
474
, pp.
16
23
.10.1016/j.jnoncrysol.2017.08.011
7.
Tekin
,
H.
, and
Manici
,
T.
,
2017
, “
Simulations of Mass Attenuation Coefficients for Shielding Materials Using the MCNP-X Code
,”
Nucl. Sci. Tech.
,
28
(
7
), pp.
1
4
.10.1007/s41365-017-0253-4
8.
Lakshminarayana
,
G.
,
Baki
,
S. O.
,
Kaky
,
K. M.
,
Sayyed
,
M. I.
,
Tekin
,
H. O.
,
Lira
,
A.
,
Kityk
,
I. V.
, and
Mahdi
,
M. A.
,
2017
, “
Investigation of Structural, Thermal Properties and Shielding Parameters for Multi-Component Borate Glasses for Gamma and Neutron Radiation Shielding Applications
,”
J. Non-Cryst. Solids
,
471
, pp.
222
237
.10.1016/j.jnoncrysol.2017.06.001
9.
Issa
,
S. A. M.
,
Sayyed
,
M. I.
,
Zaid
,
M. H. M.
, and
Matori
,
K. A.
,
2018
, “
Photon Parameters for Gamma-Rays Sensing Properties of Some Oxide of Lanthanides
,”
Results Phys.
,
9
, pp.
206
210
.10.1016/j.rinp.2018.02.039
10.
More
,
C. V.
,
Bhosale
,
R. R.
, and
Pawar
,
P. P.
,
2017
, “
Detection of New Polymer Materials as Gamma-Ray-Shielding Materials
,”
Radiat. Eff. Defect Solid
,
172
(
5–6
), pp.
469
484
.10.1080/10420150.2017.1336765
11.
Büyükyıldız
,
M.
,
Taşdelen
,
M. A.
,
Karabul
,
Y.
,
Çağlar
,
M.
,
İçelli
,
O.
, and
Boydaş
,
E.
,
2018
, “
Measurement of Photon Interaction Parameters of High-Performance Polymers and Their Composites
,”
Radiat. Eff. Defect Solid
,
173
(
5–6
), pp.
474
488
.10.1080/10420150.2018.1477155
12.
Kucuk
,
N.
,
Cakir
,
M.
, and
Isitman
,
A. L.
,
2013
, “
Mass Attenuation Coefficients, Effective Atomic Numbers and Effective Electron Densities for Some Polymers
,”
Radiat. Protect. Dosim.
,
153
(
1
), pp.
127
134
.10.1093/rpd/ncs091
13.
Singh
,
V. P.
,
Badiger
,
N. M.
, and
Kucuk
,
N.
,
2014
, “
Assessment of Methods for Estimation of Effective Atomic Numbers of Common Human Organ and Tissue Substitutes: Waxes, Plastics and Polymers
,”
Radioprotection
,
49
(
2
), pp.
115
121
.10.1051/radiopro/2013090
14.
Gurler
,
O.
, and
Tarım
,
U.
,
2016
, “
Determination of Radiation Shielding Properties of Some Polymer and Plastic Materials Against Gamma-Rays
,”
Acta Phys. Polon. A
,
130
(
1
), pp.
236
238
.10.12693/APhysPolA.130.236
15.
Bhosale
,
R. R.
,
More
,
C.
,
Gaikwad
,
D. K.
,
Pawar
,
P. P.
, and
Rode
,
M.
,
2017
, “
Radiation Shielding and Gamma Ray Attenuation Properties of Some Polymers
,”
Nucl. Technol. Radiat. Protect.
,
32
(
3
), pp.
288
293
.10.2298/NTRP1703288B
16.
Sayyed
,
M.
,
2016
, “
Investigation of Shielding Parameters for Smart Polymers
,”
Chin. J. Phys
,
54
(
3
), pp.
408
415
.10.1016/j.cjph.2016.05.002
17.
Mirji
,
R.
, and
Lobo
,
B.
,
2017
, “
Computation of the Mass Attenuation Coefficient of Polymeric Materials at Specific Gamma Photon Energies
,”
Radiat. Phys. Chem.
,
135
, pp.
32
44
.10.1016/j.radphyschem.2017.03.001
18.
Manjunatha
,
H.
,
2017
, “
A Study of Gamma Attenuation Parameters in Polymethyl Methacrylate and Kapton
,”
Radiat. Phys. Chem.
,
137
, pp.
254
59
.10.1016/j.radphyschem.2016.01.024
19.
Mann
,
K. S.
,
Rani
,
A.
, and
Heer
,
M. S.
,
2015
, “
Shielding Behaviors of Some Polymer and Plastic Materials for Gamma-Rays
,”
Radiat. Phys. Chem.
,
106
, pp.
247
254
.10.1016/j.radphyschem.2014.08.005
20.
Vahabi
,
S. M.
,
Bahreinipour
,
M.
, and
Zafarghandi
,
M. S.
,
2017
, “
Determining the Mass Attenuation Coefficients for Some Polymers Using MCNP Code: A Comparison Study
,”
Vacuum
,
136
, pp.
73
76
.10.1016/j.vacuum.2016.11.011
21.
Singh
,
V. P.
,
Shirmardi
,
S. P.
,
Medhat
,
M. E.
, and
Badiger
,
N. M.
,
2015
, “
Determination of Mass Attenuation Coefficient for Some Polymers Using Monte Carlo Simulation
,”
Vacuum
,
119
, pp.
284
288
.10.1016/j.vacuum.2015.06.006
22.
Pilato
,
L. A.
, and
Michno
,
M. J.
,
1994
, “
Advanced Composite Materials
,”
Springer Science & Business Media
, 1st ed.,
Springer-Verlag
,
Berlin Heidelberg, Germany
.
23.
Akman
,
F.
,
Durak
,
R.
,
Turhan
,
M. F.
, and
Kaçal
,
M. R.
,
2015
, “
Studies on Effective Atomic Numbers, Electron Densities From Mass Attenuation Coefficients Near the K Edge in Some Samarium Compounds
,”
Appl. Radiat. Isot.
,
101
, pp.
107
113
.10.1016/j.apradiso.2015.04.001
24.
Sayyed
,
M. I.
,
Akman
,
F.
,
Turan
,
V.
, and
Araz
,
A.
,
2018
, “
Evaluation of Radiation Absorption Capacity of Some Soil Samples
,”
Radiochim. Acta
,
107
(
1
), pp.
83
93
.10.1515/ract-2018-2996
25.
Kacal
,
M. R.
,
Akman
,
F.
, and
Sayyed
,
M. I.
,
2019
, “
Investigation of Radiation Shielding Properties for Some Ceramics
,”
Radiochim. Acta
,
107
(
2
), pp.
179
191
.10.1515/ract-2018-3030
26.
Elbashir
,
B. O.
,
Dong
,
M. G.
,
Sayyed
,
M. I.
,
Issa
,
S. A. M.
,
Matori
,
K. A.
, and
Zaid
,
M. H. M.
,
2018
, “
Comparison of Monte Carlo Simulation of Gamma Ray Attenuation Coefficients of Amino Acids With XCOM Program and Experimental Data
,”
Results Phys.
,
9
, pp.
6
11
.10.1016/j.rinp.2018.01.075
27.
Kaplan
,
M. F.
,
1989
,
Concrete Radiation Shielding
,
Wiley
,
New York
.
28.
Glasstone
,
S.
, and
Sesonske
,
A.
,
1986
,
Nuclear Reactor Engineering
, 3rd ed.,
CBS Publishers & Distributors
,
Shahdara, Delhi, India
.
29.
Profio
,
A. E.
,
1979
,
Radiation Shielding and Dosimetry
,
Wiley
,
New York
.
30.
Wood
,
J.
,
1982
,
Computational Methods in Reactor Shielding
,
Pergamon Press
, New York.
31.
Martin
,
J. E.
,
2000
,
Physics for Radiation Protection
,
Wiley
,
New York
.
32.
Chilton
,
A. B.
,
Shultis
,
J. K.
, and
Faw
,
R. E.
,
1984
,
Principles of Radiation Shielding
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
33.
El-Khayatt
,
A. M.
,
2010
, “
Calculation of Fast Neutron Removal Cross-Sections for Some Compounds and Materials
,”
Ann. Nucl. Energy
,
37
(
2
), pp.
218
222
.10.1016/j.anucene.2009.10.022
34.
Hubbell
,
J. H.
,
1969
, “
Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients From 10 keV to 100 GeV
,”
Natl. Stand. Ref. Data Ser.
,
29
, pp.
1
85
.10.6028/NBS.NSRDS.29
35.
Hubbell
,
J.
, and
Seltzer
,
S.
,
1995
,
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
,
National Institute of Standards and Technology
,
Gaithersburg
. Report No. NISTIR-5632.
36.
Osman
,
A. M.
,
Abdel-Monem
,
A. M.
, and
Mansour
,
F. F.
,
2016
, “
Investigation the Shielding Properties of Alumina Reinforced Composites
,”
JCBPS; Sect. C
,
6
(
1
), pp.
302
315
.https://www.researchgate.net/publication/292966683_Investigation_the_Shielding_Properties_of_Alumina_Reinforced_Composites
37.
Elmahroug
,
Y.
,
Tellili
,
B.
, and
Souga
,
C.
,
2013
, “
Calculation of Gamma and Neutron Shielding Parameters for Some Materials Polyethylene-Based
,”
Int. J. Phys. Res. (IJPR)
,
3
(
1
), pp.
33
40
.http://www.tjprc.org/publishpapers/2-44-1363262302-7.CALCULATION%20OF%20-%20FULL.pdf
You do not currently have access to this content.