Abstract

The properties of nuclear fuel depend on the actual isotopic composition which develops during a reactor operation. In practice, the prediction accuracy of burnup calculations serves as the basis for the future precise estimation of a core lifetime and other safety-based core characteristics. The present study quantifies nuclear data induced uncertainties of nuclide concentrations and multiplication factors in water–water energetic reactor (VVER)-440 fuel depletion analysis. The well-known SCALE system and the TRITON sequence are used with the NEWT deterministic solver in the SAMPLER module that implements stochastic techniques to assess the uncertainty in computed results. The propagation of uncertainties in neutron cross section and fission yields is studied through the depletion calculation of 2D heterogeneous VVER-440 fuel assembly with an average enrichment of 4.87 wt % of 235U and six gadolinium rods with 3.35% of Gd2O3. In the paper, fixed nominal depletion conditions are based on the real operational data of the Slovak nuclear power plant Bohunice unit 4 during cycle 30. In total, 250 cases with uncertain parameters are computed and the results are evaluated by an auxiliary tool.

References

1.
Nyalunga
,
G. P.
,
Naicker
,
V. V.
, and
Ivanov
,
K.
,
2019
, “
Quantification and Propagation of Neutronics Uncertainties of the Kozloduy-6 VVER-1000 Fuel Assembly Using SCALE 6.2.1 Within the NEA/OECD Benchmark for Uncertainty Analysis in Modelling of LWRs
,”
Ann. Nucl. Energy
,
133
, pp.
732
749
.10.1016/j.anucene.2019.07.016
2.
Vrban
,
B.
,
Lüley
,
J.
,
Čerba
,
Š.
,
Osuský
,
F.
, and
Kim
,
S. J.
,
2017
, “
Cross Section Adjustment for Fast Reactor Design: ATCROSS Code and Its Application
,”
Ann. Nucl. Energy
,
110
, pp.
928
940
.10.1016/j.anucene.2017.08.008
3.
Díez
,
C. J.
,
Cabellos
,
O.
, and
Martínez
,
J. S.
,
2015
, “
Nuclear Data Uncertainty Propagation in Depletion Calculations Using Cross Section Uncertainties in One-Group or Multi-Group
,”
Nucl. Data Sheets
,
123
, pp.
79
83
.10.1016/j.nds.2014.12.014
4.
Martinez
,
J. S.
,
Zwermann
,
W.
,
Gallner
,
L.
,
Puente-Espel
,
F.
,
Cabellos
,
O.
,
Velkov
,
K.
, and
Hannstein
,
V.
,
2014
, “
Propagation of Neutron Cross Section, Fission Yield, and Decay Data Uncertainties in Depletion Calculations
,”
Nucl. Data Sheets
,
118
, pp.
480
483
.10.1016/j.nds.2014.04.112
5.
Wan
,
C.
,
Cao
,
L.
,
Wu
,
H.
, and
Shen
,
W.
,
2017
, “
Nuclear-Data Uncertainty Propagations in Burnup Calculation for the PWR Assembly
,”
Ann. Nucl. Energy
,
100
, pp.
20
31
.10.1016/j.anucene.2016.09.037
6.
Suk
,
P.
, and
Frýbort
,
J.
,
2020
, “
Reflector Macroscopic Cross-Section Data Uncertainties Effect on the Nodal Code Full-Core Calculation
,”
Nucl. Eng. Des.
,
366
, p.
110743
.10.1016/j.nucengdes.2020.110743
7.
Rintala
,
A.
,
2019
, “
Evaluating the Effect of Decay and Fission Yield Data Uncertainty
,”
Proceedings of the International Conference Nuclear Energy for New Europe. Portorož, Nuclear Society of Slovenia
, Slovenia, Sept. 9–12, Paper No. 602, p.
8
.
8.
Kimura
,
R.
, and
Chiba
,
G.
,
2019
, “
Study on Probability Distribution of Input Nuclear Data
,”
Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Nuclear Society of Slovenia
, Slovenia, Sept. 9–12, Paper No. 607, p.
8
.
9.
Rearden
,
B. T.
, and
Jessee
,
M. A.
,
2018
, “
SCALE Code System, Version 6.2.3.
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
ORNL/TM-2005/39
.https://www.ornl.gov/sites/default/files/SCALE_6.2.3.pdf
10.
Chadwick
,
M. B.
,
Herman
,
M.
,
Obložinský
,
P.
,
Dunn
,
M. E.
,
Danon
,
Y.
,
Kahler
,
A. C.
,
Smith
,
D. L.
,
Pritychenko
,
B.
,
Arbanas
,
G.
,
Arcilla
,
R.
,
Brewer
,
R.
,
Brown
,
D. A.
,
Capote
,
R.
,
Carlson
,
A. D.
,
Cho
,
Y. S.
,
Derrien
,
H.
,
Guber
,
K.
,
Hale
,
G. M.
,
Hoblit
,
S.
,
Holloway
,
S.
,
Johnson
,
T. D.
,
Kawano
,
T.
,
Kiedrowski
,
B. C.
,
Kim
,
H.
,
Kunieda
,
S.
,
Larson
,
N. M.
,
Leal
,
L.
,
Lestone
,
J. P.
,
Little
,
R. C.
,
McCutchan
,
E. A.
,
MacFarlane
,
R. E.
,
MacInnes
,
M.
,
Mattoon
,
C. M.
,
McKnight
,
R. D.
,
Mughabghab
,
S. F.
,
Nobre
,
G. P. A.
,
Palmiotti
,
G.
,
Palumbo
,
A.
,
Pigni
,
M. T.
,
Pronyaev
,
V. G.
,
Sayer
,
R. O.
,
Sonzogni
,
A. A.
,
Summers
,
N. C.
,
Talou
,
P.
,
Thompson
,
I. J.
,
Trkov
,
A.
,
Vogt
,
R. L.
,
van der Marck
,
S. C.
,
Wallner
,
A.
,
White
,
M. C.
,
Wiarda
,
D.
, and
Young
,
P. G.
,
2011
, “
ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
,”
Nucl. Data Sheets
,
112
(
12
), pp.
2887
2996
.10.1016/j.nds.2011.11.002
11.
Brown
,
D. A.
,
Chadwick
,
M. B.
,
Capote
,
R.
,
Kahler
,
A. C.
,
Trkov
,
A.
,
Herman
,
M. W.
,
Sonzogni
,
A. A.
,
Danon
,
Y.
,
Carlson
,
A. D.
,
Dunn
,
M.
,
Smith
,
D. L.
,
Hale
,
G. M.
,
Arbanas
,
G.
,
Arcilla
,
R.
,
Bates
,
C. R.
,
Beck
,
B.
,
Becker
,
B.
,
Brown
,
F.
,
Casperson
,
R. J.
,
Conlin
,
J.
,
Cullen
,
D. E.
,
Descalle
,
M. A.
,
Firestone
,
R.
,
Gaines
,
T.
,
Guber
,
K. H.
,
Hawari
,
A. I.
,
Holmes
,
J.
,
Johnson
,
T. D.
,
Kawano
,
T.
,
Kiedrowski
,
B. C.
,
Koning
,
A. J.
,
Kopecky
,
S.
,
Leal
,
L.
,
Lestone
,
J. P.
,
Lubitz
,
C.
,
Márquez Damián
,
J. I.
,
Mattoon
,
C. M.
,
McCutchan
,
E. A.
,
Mughabghab
,
S.
,
Navratil
,
P.
,
Neudecker
,
D.
,
Nobre
,
G. P. A.
,
Noguere
,
G.
,
Paris
,
M.
,
Pigni
,
M. T.
,
Plompen
,
A. T.
,
Pritychenko
,
B.
,
Pronyaev
,
V. G.
,
Roubtsov
,
D.
,
Rochman
,
D.
,
Romano
,
P.
,
Schillebeeckx
,
P.
,
Simakov
,
S.
,
Sin
,
M.
,
Sirakov
,
I.
,
Sleaford
,
B.
,
Sobes
,
V.
,
Soukhovitskii
,
E. V.
,
Stetcu
,
I.
,
Talou
,
P.
,
Thompson
,
I.
,
van der Marck
,
S.
,
Welser-Sherrill
,
L.
,
Wiarda
,
D.
,
White
,
M.
,
Wormald
,
J. L.
,
Wright
,
R. Q.
,
Zerkle
,
M.
,
Žerovnik
,
G.
, and
Zhu
,
Y.
,
2018
, “
ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library
,”
Nucl. Data Sheets
,
148
, pp.
1
142
.10.1016/j.nds.2018.02.001
12.
Wieselquist
,
W.
,
Williams
,
M.
,
Wiarda
,
D.
,
Pigni
,
M.
, and
Mertyurek
,
U.
,
2017
, “
Overview of Nuclear Data Uncertainty in Scale and Application to Light Water Reactor Uncertainty Analysis
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
NUREG/CR-7249
.https://www.nrc.gov/reading-rm/doccollections/nuregs/contract/cr7249/index.html
13.
Herman
,
M.
,
2010
, “
Development of ENDF/B-VII.1 and Its Covariance Component
,” BNL, Report No.
BNL-93619-2010
.https://digital.library.unt.edu/ark:/67531/metadc836184/
14.
DeHart
,
M. D.
,
2007
, “
High-Fidelity Lattice Physics Capabilities of the SCALE Code System Using TRITON
,”
American Nuclear Society and European Nuclear Society International Conference on Making the Renaissance Real
, Transactions of American Nuclear Society, Washington, DC, pp.
598
600
.
15.
Ade
,
B. J.
,
2012
, “
A Primer for Light Water Reactor Lattice Physics Calculations
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No.
NUREG/CR-7041
.https://www.nrc.gov/docs/ML1233/ML12338A215.pdf
16.
Vrban
,
B.
,
Čerba
,
Š.
,
Lüley
,
J.
, and
Haščík
,
J.
,
2016
, “
Investigation of Burnup Modelling Issues Associated With WWER440 Fuel
,”
J. Nucl. Res. Dev.
,
12
, pp.
21
27
.http://www.jnrdnuclear.ro/images/JNRD/No.12/jnrd-121_art4.pdf
17.
Vrban
,
B.
,
Čerba
,
Š.
,
Lüley
,
J.
, and
Osuský
,
F.
,
2019
, “
On Burnup Modelling Issues Associated With VVER-440 Fuels
,”
Nucl. Sci. Technol.
,
9
, pp.
01
09
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/51/079/51079285.pdf
18.
Kim
,
K. S.
, and
DeHart
,
M. D.
,
2011
, “
Unstructured Partial- and Net-Current Based Coarse Mesh Finite Difference Acceleration Applied to the Extended Step Characteristics Method in NEWT
,”
Ann. Nucl. Energy
,
38
(
2–3
), pp.
527
534
.10.1016/j.anucene.2010.09.011
19.
Williams
,
M. L.
,
Ilas
,
G.
,
Jessee
,
M. A.
,
Rearden
,
B. T.
,
Wiarda
,
D.
,
Zwermann
,
W.
,
Gallner
,
L.
,
Klein
,
M.
,
Krzykacz-Hausmann
,
B.
, and
Pautz
,
A.
,
2013
, “
A Statistical Sampling Method for Uncertainty Analysis With SCALE and XSUSA
,”
Nucl. Technol.
,
183
(
3
), pp.
515
526
.10.13182/NT12-112
20.
Pigni
,
M. T.
,
Francis
,
M. W.
, and
Gauld
,
I. C.
,
2015
, “
Investigation of Inconsistent ENDF/B-VII.1 Independent and Cumulative Fission Product Yields With Proposed Revisions
,”
Nucl. Data Sheets
,
123
, pp.
231
236
.10.1016/j.nds.2014.12.040
21.
Vrban
,
B.
,
Lüley
,
J.
,
Čerba
,
Š.
, and
Osuský
,
F.
,
2016
, “
Determination of the Computational Bias in Criticality Safety Validation of VVER-440/V213
,”
25th International Conference Nuclear Energy for New Europe, Portorož, Nuclear Society of Slovenia
, Slovenia, Sept. 5–8, Paper No. 322, p.
12
.https://www.semanticscholar.org/paper/Determination-of-the-Computational-Bias-in-Safety-%2FVrban-L%C5%B1ley/1a51881e64cfb29a8e08371402dc1f7c3b0c8934
22.
Hermann
,
O. W.
, and
Alexander
,
C. W.
,
1986
,
A Review of Spent-Fuel Photon and Neutron Source Spectra
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
, p.
21
.
23.
Tanskannen
,
A.
,
2000
,
Assessment of the Neutron and Gamma Sources of the Spent BWR Fuel
,
Finland
,
Helsinki
, p.
33
.
24.
Devida
,
C.
,
Peerani
,
P.
,
Betto
,
M.
,
Tohscano
,
E. M.
, and
Goll
,
W.
,
2004
, “
Quantitative Burnup Determination: A Comparison of Different Experimental Methods
,”
Proceedings of HOTLAB Plenary Meeting
, Norway, Halden, Sept. 6–8, p.
7
.https://www.osti.gov/etdeweb/servlets/purl/20599369
25.
NEA, OECD
,
2011
, “
Spent Nuclear Fuel Assay Data for Isotopic Validation
,” OECD, Paris, France, p.
97
, accessed Aug. 15, 2020, https://www.oecd-nea.org/science/wpncs/ADSNF/SOAR_final.pdf
You do not currently have access to this content.