Abstract

This work is part of a benchmarking exercise organized by an IAEA in supercritical water-cooled reactor (SCWR) thermal-hydraulics aimed at improving the understanding and prediction accuracy of the thermal-hydraulic phenomena relevant to SCWRs. An experiment carried out using a 2 × 2 SCWR bundle at University of Wisconsin-Madison was modeled using an open-source computational fluid dynamics (CFD) code—Code_Saturne. The k–ω shear stress transport (SST) model was used to account for the buoyancy-aided turbulent flow in the fuel channel. Significant heat transfer deterioration (HTD) was observed in the boundary layer, which is commonly expected to occur in buoyancy-aided flows. For comparison, simulations were also conducted using ansysfluent with similar model setups.

References

1.
Heusener
,
G.
,
Muller
,
U.
,
Schulenberg
,
T.
, and
Squarer
,
D.
,
2000
, “
A European Development Program for a High Performance Light Water Reactor (HPLWR
),”
Proceedings of First International Symposium on Supercritical Water Cooled Reactor Design and Technology
, Tokyo, Japan, Nov. 6–9, pp.
23
28.
https://www.osti.gov/etdeweb/biblio/20195576
2.
Oka
,
Y.
, and
Koshizuka
,
S.
,
2001
, “
Supercritical-Pressure, Once-Through Cycle Light Water Cooled Reactor Concept
,”
J. Nucl. Sci. Technol.
,
38
(
12
), pp.
1081
1089
.10.1080/18811248.2001.9715139
3.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
Turbulent Forced Convection in Channels and Rod Bundles
,
S.
Kakac
and
D. B.
Spalding
, eds., Vol.
2
,
Hemisphere
,
Washington, DC
, pp.
563
611
.
4.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Rod Bundles
,
S.
Kakac
and
D. B.
Spalding
, eds., Vol.
2
,
Hemisphere
,
Washington, DC
, pp.
613
640
.
5.
Abdulmohsin
,
R. S.
, and
Al-Dahhan
,
M. H.
,
2016
, “
Axial Dispersion and Mixing Phenomena of the Gas Phase in a Packed Pebble-Bed Reactor
,”
Ann. Nucl. Energy
,
88
, pp.
100
111
.10.1016/j.anucene.2015.10.038
6.
Bae
,
J. H.
,
Yoo
,
J. Y.
, and
Choi
,
H.
,
2005
, “
Direct Numerical Simulation of Turbulent Supercritical Flows With Heat Transfer
,”
Phys. Fluids
,
17
(
10
), p.
105104
.10.1063/1.2047588
7.
He
,
S.
,
Jiang
,
P. X.
,
Shi
,
R.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2004
, “
Computational Study of Convective Heat Transfer to CO2 at Supercritical Pressure in a Vertical Mini Tube
,”
Proceedings of Second International Conference on Microchannels and Minichannels
, Rochester, NY, June 17–19, Paper No. 2348.
8.
He
,
S.
,
Jiang
,
P.-X.
,
Xu
,
Y.-J.
,
Shi
,
R.-F.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2005
, “
A Computational Study of Convection Heat Transfer to CO2 at Supercritical Pressures in a Vertical Mini Tube
,”
Int. J. Therm. Sci.
,
44
(
6
), pp.
521
530
.10.1016/j.ijthermalsci.2004.11.003
9.
He
,
S.
,
Kim
,
W. S.
, and
Bae
,
J. H.
,
2008
, “
Assessment of Performance of Turbulence Models in Predicting Supercritical Pressure Heat Transfer in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
51
(
19–20
), pp.
4659
4675
.10.1016/j.ijheatmasstransfer.2007.12.028
10.
He
,
S.
,
Kim
,
W. S.
,
Jiang
,
P. X.
, and
Jackson
,
J. D.
,
2004
, “
Simulation of Mixed Convection Heat Transfer to Carbon Dioxide at Supercritical Pressure
,”
Proc. Inst. Mech. Eng., Part C
,
218
(
11
), pp.
1281
1296
.10.1177/095440620421801101
11.
Jaromin
,
M.
, and
Anglart
,
H.
,
2013
, “
A Numerical Study of Heat Transfer to Supercritical Water Flowing Upward in Vertical Tubes Under Normal and Deteriorated Conditions
,”
Nucl. Eng. Des.
,
264
, pp.
61
70
.10.1016/j.nucengdes.2012.10.028
12.
Liu
,
L.
,
Xiao
,
Z.
,
Yan
,
X.
,
Zeng
,
X.
, and
Huang
,
Y.
,
2013
, “
Heat Transfer Deterioration to Supercritical Water in Circular Tube and Annular Channel
,”
Nucl. Eng. Des.
,
255
, pp.
97
104
.10.1016/j.nucengdes.2012.09.025
13.
Kao
,
M.-T.
,
Lee
,
M.
,
Ferng
,
Y.-M.
, and
Chieng
,
C.-C.
,
2010
, “
Heat Transfer Deterioration in a Supercritical Water Channel
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3321
3328
.10.1016/j.nucengdes.2010.06.028
14.
Sharabi
,
M.
,
Ambrosini
,
W.
,
He
,
S.
, and
Jackson
,
J. D.
,
2008
, “
Prediction of Turbulent Convective Heat Transfer to a Fluid at Supercritical Pressure in Square and Triangular Channels
,”
Ann. Nucl. Energy
,
35
(
6
), pp.
993
1005
.10.1016/j.anucene.2007.11.006
15.
Liu
,
L.
,
Xiao
,
Z.
,
Yan
,
X.
,
Zeng
,
X.
, and
Huang
,
Y.
,
2013
, “
Numerical Simulation of Heat Transfer Deterioration Phenomenon to Supercritical Water in Annular Channel
,”
Ann. Nucl. Energy
,
53
, pp.
170
181
.10.1016/j.anucene.2012.08.022
16.
Ma
,
D.
,
Zhou
,
T.
, and
Li
,
B.
,
2017
, “
Diametrical Effects of Supercritical Water Heat Transfer in Annular Channels
,”
Proceedings of 17th International Topical Meeting on Nuclear Reactor Thermalhydraulics, Xi’an
, China, Sept. 3–8, Paper No. 20613.
17.
Podila
,
K.
, and
Rao
,
Y.
,
2016
, “
CFD Modelling of Supercritical Water Flow and Heat Transfer in a 2 × 2 Fuel Rod Bundle
,”
Nucl. Eng. Des.
,
301
, pp.
279
289
.10.1016/j.nucengdes.2016.03.019
18.
Palko
,
D.
, and
Anglart
,
H.
,
2008
, “
Theoretical and Numerical Study of Heat Transfer Deterioration in High Performance Light Water Reactor
,”
Sci. Technol. Nucl. Install.
,
2008
, pp.
1
5
.10.1155/2008/405072
19.
Schulenberg
,
T.
, and
Visser
,
D. C.
,
2013
, “
Thermal-Hydraulics and Safety Concepts of Supercritical Water Cooled Reactors
,”
Nucl. Eng. Des.
,
264
, pp.
231
237
.10.1016/j.nucengdes.2012.08.040
20.
Zhu
,
Y.
,
2010
, “
Numerical Investigation of the Flow and Heat Transfer Within the Core Cooling Channel of a Supercritical Water Reactor
,” Ph.D. thesis, Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart, Stuttgart, Germany.
21.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2015
, “
Mean Statistics of a Heated Turbulent Pipe Flow at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
83
, pp.
741
752
.10.1016/j.ijheatmasstransfer.2014.12.039
22.
Nemati
,
H.
,
Patel
,
A.
,
Boersma
,
B. J.
, and
Pecnik
,
R.
,
2016
, “
The Effect of Thermal Boundary Conditions on Forced Convection Heat Transfer to Fluids at Supercritical Pressure
,”
J. Fluid Mech.
,
800
, pp.
531
556
.10.1017/jfm.2016.411
23.
Wang
,
W.
, and
He
,
S.
,
2015
, “
Direct Numerical Simulation of Fluid Flow at Supercritical Pressure in a Vertical Channel
,”
Proceedings of 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Chicago, IL, Aug. 30–Sept. 4, pp.
2334
2347
.https://pdfs.semanticscholar.org/4348/32bb980a43758511531cf9c52bb86ce4ba8b.pdf
24.
Bae
,
J. H.
,
Yoo
,
J. Y.
,
Choi
,
H.
, and
McEligot
,
D. M.
,
2006
, “
Effects of Large Density Variation on Strongly Heated Internal Air Flows
,”
Phys. Fluids
,
18
(
7
), p.
075102
.10.1063/1.2216988
25.
Leung
,
L.
, and
Rao
,
Y.
,
2015
, “
A Strategy in Developing Heat-Transfer Correlation for Fuel Assembly of the Canadian Super-Critical Water-Cooled Reactor
,”
Proceedings of Seventh International Symposium on Supercritical Water-Cooled Reactors
, Helsinki, Finland, Mar. 15–18, Paper No. 2031.https://www.researchgate.net/publication/274006525_A_strategy_in_developing_heat-transfer_correlation_for_fuel_assembly_of_the_Canadian_super-critical_water-cooled_reactor
26.
Ampomah-Amoako
,
E.
,
Akaho
,
E. H. K.
,
Nyarko
,
B. J. B.
, and
Ambrosini
,
W.
,
2013
, “
Analysis of Flow Stability in Nuclear Reactor Subchannels With Water at Supercritical Pressures
,”
Ann. Nucl. Energy
,
60
, pp.
396
405
.10.1016/j.anucene.2013.05.031
27.
Gu
,
H. Y.
,
Cheng
,
X.
, and
Yang
,
Y. H.
,
2010
, “
CFD Analysis of Thermal-Hydraulic Behavior of Supercritical Water in Sub-Channels
,”
Nucl. Eng. Des.
,
240
(
2
), pp.
364
374
.10.1016/j.nucengdes.2008.08.022
28.
Podila
,
K.
, and
Rao
,
Y. F.
,
2015
, “
CFD Analysis of Flow and Heat Transfer in Canadian Supercritical Water Reactor Bundle
,”
Ann. Nucl. Energy
,
75
, pp.
1
10
.10.1016/j.anucene.2014.07.039
29.
Rahman
,
M. M.
,
Dongxu
,
J.
,
Beni
,
M. S.
,
Hei
,
H. C.
,
He
,
W.
, and
Zhao
,
J.
,
2016
, “
Supercritical Water Heat Transfer for Nuclear Reactor Applications: A Review
,”
Ann. Nucl. Energy
,
97
, pp.
53
65
.10.1016/j.anucene.2016.06.022
30.
Rohde
,
M.
,
Peeters
,
J. W. R.
,
Pucciarelli
,
A.
,
Kiss
,
A.
,
Rao
,
Y. F.
,
Onder
,
E. N.
,
Muehlbauer
,
P.
,
Batta
,
A.
,
Hartig
,
M.
,
Chatoorgoon
,
V.
,
Thiele
,
R.
,
Chang
,
D.
,
Tavoularis
,
S.
,
Novog
,
D.
,
McClure
,
D.
,
Gradecka
,
M.
, and
Takase
,
K.
,
2016
, “
A Blind, Numerical Benchmark Study on Supercritical Water Heat Transfer Experiments in a 7-Rod Bundle
,”
J. Nucl. Eng. Radiat. Sci.
,
2
(
2
), p.
021012
.10.1115/1.4031949
31.
Fournier
,
Y.
,
Bonelle
,
J.
,
Moulinec
,
C.
,
Shang
,
Z.
,
Sunderland
,
A. G.
, and
Uribe
,
J. C.
,
2011
, “
Optimizing Code_Saturne Computations on Petascale Systems
,”
Comput. Fluids
,
45
(
1
), pp.
103
108
.10.1016/j.compfluid.2011.01.028
32.
ANSYS, Inc.
,
2015
, “
ANSYS FLUENT User’s Guide, Release 16.2
,”
ANSYS
, Canonsburg, PA.
33.
Kate
,
L.
, and
Anderson
,
M.
,
2016
, “
CFD Benchmark Analysis for 2x2 Fuel Rod Bundle
,” unpublished.
34.
Xiong
,
J.
, and
Cheng
,
X.
,
2014
, “
Turbulence Modelling for Supercritical Pressure Heat Transfer in Upward Tube Flow
,”
Nucl. Eng. Des.
,
270
, pp.
249
258
.10.1016/j.nucengdes.2014.01.014
35.
He
,
S.
,
Kim
,
W. S.
, and
Jackson
,
J. D.
,
2008
, “
A Computational Study of Convective Heat Transfer to Carbon Dioxide at a Pressure Just Above the Critical Value
,”
Appl. Therm. Eng.
,
28
(
13
), pp.
1662
1675
.10.1016/j.applthermaleng.2007.11.001
You do not currently have access to this content.