Recently, the supercritical carbon dioxide Brayton (SCO2) cycle gained a lot of attention for its application to next-generation nuclear reactors. Turbine is the key component of the energy conversion in the thermodynamic cycle. Transonic centrifugal turbine has advantages of compatibility of aerodynamic and geometric, low cost, high power density, and high efficiency; therefore, it has opportunity to become the main energy conversion equipment in the future. In this paper, a transonic nozzle and its corresponding rotor cascade of the single-stage centrifugal turbine were designed. In addition, the three-dimensional (3D) numerical simulation and performance analysis were conducted. The numerical simulation results show that the predicted flow field is as expected and the aerodynamic parameters are in good agreement with one-dimensional (1D) design. Meanwhile, the off-design performance analysis shows that the transonic centrifugal turbine stage has wide stable operation range and strong load adaptability. Therefore, it can be concluded that the proposed turbine blade has good performance characteristics.

References

1.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
2.
Odabaee
,
M.
,
Sauret
,
E.
, and
Hooman
,
K.
,
2016
, “
CFD Simulation of a Supercritical Carbon Dioxide Radial-Inflow Turbine, Comparing the Results of Using Real Gas Equation of Estate and Real Gas Property File
,”
Appl. Mech. Mater.
,
846
, pp.
85
90
.
3.
Lee
,
J.
,
Lee
,
J. I.
,
Ahn
,
Y.
, and
Yoon
,
H.
,
2012
, “
Design Methodology of Supercritical CO2 Brayton Cycle Turbomachineries
,”
ASME
Paper No. GT2012-68933.
4.
Schmitt
,
J.
,
Willis
,
R.
,
Amos
,
D.
,
Kapat
,
J.
, and
Custer
, C.
,
2014
, “
Study of a Supercritical CO2 Turbine With TIT of 1350 K for Brayton Cycle With 100 MW Class Output: Aerodynamic Analysis of Stage 1 Vane
,”
ASME
Paper No. GT2014-27214.
5.
Zhang
,
H.
,
Zhao
,
H.
,
Deng
,
Q.
, and
Feng
,
Z.
,
2015
, “
Aerothermodynamic Design and Numerical Investigation of Supercritical Carbon Dioxide Turbine
,”
ASME
Paper No. GT2015-42619.
6.
Wang
,
Y.
,
Tan
,
X.
,
Wang
,
N.
, and
Huang
,
D.
,
2018
, “
Aerodynamic Design and Numerical Study for Centrifugal Turbine With Different Shapes of Volutes
,”
Appl. Therm. Eng.
,
131
, pp.
472
485
.
7.
Ljungström
,
F.
,
1949
, “
The Development of the Ljungström Steam Turbine and Air Preheater
,”
Proc. Inst. Mech. Eng.
,
160
(
1
), pp.
211
223
.
8.
Welch
,
P.
, and
Boyle
,
P.
,
2009
, “
New Turbines to Enable Efficient Geothermal Power Plants
,”
Geotherm. Resour. Council Trans.
,
33
, pp.
765
772
.http://energent.net/documents/Geothermal_Resources_Council_2009_Paper.pdf
9.
Welch
,
P.
,
Boyle
,
P.
,
Sells
,
M.
, and
Murillo
,
I.
,
2010
, “
Performance of New Turbines for Geothermal Power Plants
,”
Geotherm. Res. Council (GRC) Trans.
,
34
, pp.
1091
1096
http://pubs.geothermal-library.org/lib/grc/1028794.pdf
10.
Welch
,
P.
,
Boyle
,
P.
,
Sells
,
M.
, and
Michelle
,
G.
,
2011
, “
Construction and Startup of Low Temperature Geothermal Power Plants
,”
Geotherm. Resour. Council Trans.
,
35
, pp.
1351
1356
.http://www.energent.net/documents/Geothermal_Resources_Council_2011_Paper.pdf
11.
Song
,
Y.
,
Sun
,
X.
, and
Huang
,
D.
,
2017
, “
Preliminary Design and Performance Analysis of a Centrifugal Turbine for Organic Rankine Cycle (ORC) Applications
,”
Energy
,
140
, pp.
1239
1251
.
12.
Luo
,
D.
,
Tan
,
X.
, and
Huang
,
D.
,
2018
, “
Design and Performance Analysis of Three Stage Centrifugal Turbine
,”
Appl. Therm. Eng.
,
138
, pp.
740
749
.
13.
Luo
,
D.
,
Liu
,
Y.
,
Sun
,
X.
, and
Huang
,
D.
,
2017
, “
The Design and Analysis of Supercritical Carbon Dioxide Centrifugal Turbine
,”
Appl. Therm. Eng.
,
127
, pp.
527
535
.
14.
Shu
,
S.
,
1991
,
Principle of Turbomachinery
,
Tsinghua University Press
,
Beijing, China
, p.
418
.
15.
Yue
,
S.
,
Zhang
,
A.
,
Zhang
,
Y.
,
Zhu
,
Z.
, and
Huang
,
S.
,
2015
, “
Aerodynamic Design Study of Radial Inflow Turbine Used in Middle-High Temperature Solar Organic Rankine Cycle System
,”
J. Mech. Eng.
,
51
(
4
), pp.
155
160
.
16.
Li
,
Y.
,
Tan
,
X.
,
Lin
,
X.
,
Wang
,
N.
, and
Huang
,
D.
,
2016
, “
The Thermal Design and Analysis of Centrifugal Turbine
,”
J. Eng. Thermophys.
,
37
(
10
), pp.
2103
2109
(in Chinese).http://jetp.iet.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9417
17.
Wang
,
N.
,
Tan
,
X.
,
Lin
,
X.
, and
Huang
,
D.
,
2018
, “
One-Dimensional Aerodynamic Design and Optimization of Centrifugal Turbine
,”
J. Eng. Thermophys.
,
39
(
4
), pp.
773
780
(in Chinese).
18.
Hejzlar
,
P.
,
Dostal
,
V.
,
Driscoll
,
M. J.
,
Dumaz
,
P.
,
Poullennec
,
G.
, and
Alpy
,
N.
,
2006
, “
Assessment of Gas Cooled Fast Reactors the Corresponding Parameters of Turbine With Indirect Supercritical CO2 Cycle
,”
Nucl. Eng. Technol.
,
38
(
2
), pp.
443
445
.http://www.koreascience.or.kr/article/JAKO200603018220951.page
19.
Obayashi
,
S.
,
Tsukahara
,
T.
, and
Nakamura
,
T.
,
1997
, “
Cascade Airfoil Design by Multiobjective Genetic Algorithms, Genetic Algorithms in Engineering Systems: Innovations and Applications
,”
Second International Conference on. IEEE Xplore
, Chofu, Tokyo, Japan, Sept. 2–4, pp. 24–29.
20.
KöLler
,
U.
,
MöNig
,
R.
,
KüSters
,
B.
, and
Schreiber
,
H.
,
2000
, “
Turbomachinery Committee Best Paper Award: Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines—Part I: Design and Optimization
,”
ASME J. Turbomach.
,
122
(
3
), pp.
397
405
.
21.
ANSYS, CFX
,
2016
, “ANSYS CFX User's Guide Releases 17.0,”
Ansys
,
Canonsburg, PA
.
22.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1
,” Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD, Standard No. SRD 23.
You do not currently have access to this content.