We present a method to simultaneously pressurize fluid filled containers from outside and within, results of experiments with temporary 2 h of fluid precompression followed by overpressure removal before testing for cavitation strength and sensitivity to neutron radiation of multi-mL quantities of widely used unfiltered and undegassed liquids, such as water, ethanol, and dodecane (a surrogate jet fuel), enclosed within containers using glass, epoxy, and steel. We found that in contrast to prior methods involving laborious degassing and purification, a straightforward one-step approach using only a modest 2 h precompression treatment at a pressure of 0.7+ MPa enabled us, reproducibly, to reach directly the highest attainable “negative” (subvacuum) pressures attainable in our apparatus (0.7  MPa)—enabling efficient sensitivity to neutron-type radiation. Cavitation strength results are explained on theoretical grounds. However, surprisingly using the technique of this paper, the 2-h precompressed (unfiltered, undegassed) fluid also retained memory of this property, after the overpressure was removed, even 3 months later—thereby suggesting that active cavitation nuclei suppression can be extended to long periods of time. Successful results for cavitation suppression (in the absence of ionizing radiation) through 0.7  MPa were also attainable for fluids in simultaneous contact with a combination of glass, steel, and epoxy surfaces. The relative importance of cavitation strength retention at liquid–wall interfaces versus within the bulk of the fluids is reported along with implications for high-efficiency nuclear particle detection and spectroscopy, and nuclear fission water reactor safety thermal-hydraulic assessments for blowdown transients.

References

1.
Apfel
,
R. E.
,
Roy
,
S. C.
, and
Lo
,
Y. C.
,
1985
, “
Prediction of the Minimum Neutron Energy to Nucleate Vapor Bubbles in Superheated Liquids
,”
Phys. Rev. A
,
31
(
5
), pp.
3194
3198
.10.1103/PhysRevA.31.3194
2.
Apfel
,
R. E.
,
1972
, “
The Tensile Strength of Liquids
,”
Sci. Am.
,
227
(
6
), pp.
58
71
. 0036-873310.1038/scientificamerican1272-58
3.
Kubota
,
A.
,
Kato
,
H.
,
Yamaguchi
,
H.
, and
Maeda
,
M.
,
1989
, “
Unsteady Structure Measurement of Cloud Cavitation on a Foil Section Using Conditional Sampling Technique
,”
ASME J. Fluids Eng.
,
111
(
2
), pp.
204
210
.10.1115/1.3243624
4.
Nigmatulin
,
R. I.
,
1991
,
Dynamics of Multiphase Media
,
Hemisphere Publishing Corp
,
Melville, NY
.
5.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.
6.
Brennen
,
C. E.
,
1995
,
Cavitation & Bubble Dynamics
,
Oxford University Press
,
New York, NY
.
7.
Delius
,
M.
,
1997
, “
Minimal Static Excess Pressure Minimises the Effect of Extracorporeal Shock Waves on Cells and Reduces it on Gallstones
,”
Ultrasound Med. Biol.
,
23
(
4
), pp.
611
617
. 0301-562910.1016/S0301-5629(97)00038-0
8.
Kjeldsen
,
M.
,
Arndt
,
R.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fuids Eng.
,
122
(
3
), pp.
481
487
.10.1115/1.1287854
9.
Sapozhinikov
,
O. A.
,
Khokhlova
,
V.
,
Bailey
,
M.
,
Williams
,
J.
, Jr.
,
McAteer
,
J.
,
Cleveland
,
R.
,
Crum
,
L.
2002
, “
Effect of Overpressure and Pulse Repetition Frequency on Cavitation in Shock Wave Lithotripsy
,”
J. Acoust. Soc. Am.
,
112
(
3
), pp.
1183
1195
. 0001-496610.1121/1.1500754
10.
Aganin
,
A.
,
Il’gamov
,
M.
,
Nigmatulin
,
R.
, and
Toporkov
,
D. Y.
,
2010
, “
Evolution of Distortions of the Spherical Shape of a Cavitation Bubble in Acoustic Supercompression
,”
Fluid Dyn.
,
45
(
1
), pp.
50
61
. 0015-462810.1134/S0015462810010072
11.
Terentiev
,
A.
,
Kirschner
,
I.
, and
Uhlman
,
J.
,
2011
,
The Hydrodynamics of Cavitating Flows
,
Backbone Publishing Company
,
Paramus, NJ
.
12.
Buckland
,
H. C.
,
Masters
,
I.
,
Orme
,
J. A.
, and
Baker
,
T.
,
2013
, “
Cavitation Inception and Simulation in Blade Element Momentum Theory for Modeling Tidal Stream Turbines
,”
Inst. Mech. Eng. Part A: J. Power Energy
,
227
(
4
), pp.
479
485
.10.1177/0957650913477093
13.
Huang
,
B.
,
Young
,
Y.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301-1
071301-16
.10.1115/1.4023650
14.
Dunn
,
P.
,
Thomas
,
F.
,
Davis
,
M.
, and
Dorofeeva
,
I.
,
2010
, “
Experimental Characterization of Aviation-Fuel Cavitation
,”
Phys. Fluids
,
22
(
11
), p.
117102-1
117102-17
.10.1063/1.3490051
15.
Taleyarkhan
,
R. P.
,
Lapinskas
,
J. R.
, and
Xu
,
Y.
,
2008
, “
Tensioned Metastable Fluids and Nanoscale Interactions With External Stimuli—Theoretical-Cum-Experimental Assessments and Nuclear Engineering Applications
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1820
1827
. 0029-549310.1016/j.nucengdes.2007.10.019
16.
Webster
,
J. A.
,
Hagen
,
A.
,
Archambault
,
B.
,
Hume
,
N.
, and
Taleyarkhan
,
R. P.
,
2015
, “
High-Efficiency Gamma-Beta Blind Alpha Spectrometry for Nuclear Energy Applications
,”
J. Nucl. Eng. Radiat. Sci.
,
1
, p.
031006-1
031006-10
.10.1115/1.4029926
17.
Hagen
,
A.
,
Grimes
,
T.
,
Archambault
,
B.
,
Harris
,
T.
, and
Taleyarkhan
,
R. P.
,
2015
, “
Characterization and Optimization of a Tensioned Metastable Fluid Nuclear Particle Sensor Using Laser-Based Profilometry
,”
J. Nucl. Eng. Radiat. Sci.
,
1
(
4
), p.
041004-1
041004-10
.10.1115/1.4029918
18.
Archambault
,
B.
,
Webster
,
J. A.
,
Grimes
,
T.
,
Fischer
,
K.
,
Hagen
,
A.
, and
Taleyarkhan
,
R. P.
,
2015
, “
Advancements in the Development of a Directional-Position Sensing Fast Neutron Detector Using Acoustically Tensioned Metastable Fluids
,”
Nucl. Instr. Methods Phys. Res. A
,
784
(
Jun.
), pp.
176
183
.10.1016/j.nima.2014.10.051
19.
Lahey
,
R. T.
, Jr.
, and
Moody
,
F. J.
,
1993
,
The Thermal Hydraulics of a Boiling Water Nuclear Reactor
, 2nd ed.,
American Nuclear Society Monograph
,
Chicago, IL
.
20.
Briggs
,
L. J.
,
1950
, “
Limiting Negative Pressure of Water
,”
J. Appl. Phys.
,
21
(
Jul.
), pp.
721
722
.
21.
Donoghue
,
J. J.
,
Vollrath
,
R. E.
, and
Gerjvoy
,
E.
,
1951
, “
The Tensile Strength of Benzene
,”
J. Chem. Phys.
,
19
(
1
), p.
55
60
. 0021-960610.1063/1.1747989
22.
Hahn
,
B.
,
1968
, “
The Spinner. A New Detector for Rare Nuclear Processes
,”
Nuovo Cimento
,
54
(
1
), pp.
101
106
. 0029-634110.1007/BF02711528
23.
Harvey
,
E. N.
,
1944
, “
Bubble Formation in Animals
,”
J. Cell Comp. Physiol.
,
24
, pp.
1
34
.
24.
Brereton
,
G. J.
,
Crilly
,
R. J.
, and
Spears
,
J. R.
,
1998
, “
Nucleation in Small Capillary Tubes
,”
Chem. Phys.
230
(
2–3
), pp.
253
265
. 0301-010410.1016/S0301-0104(98)00052-4
25.
Scholander
,
P. F.
,
Hammel
,
H. T.
,
Bradstreet
,
E. D.
, and
Hemmingson
,
E. A.
,
1965
, “
Sap Pressure in Vascular Plants: Negative Hydrostatic Pressure Can be Measured in Plants
,”
Science
,
18
, pp.
339
345
. 0036-8075
26.
Zheng
,
Q.
,
Durben
,
D. J.
, and
Wolf
,
G. H.
,
1991
, “
Liquids at Large Negative Pressures: Water at the Homogeneous Nucleation Limit
,”
Science
,
254
(
5033
), pp.
829
832
. 0036-8075
27.
Greenspan
,
M.
, and
Tschiegg
,
C. E.
,
1979
, “
United States National Bureau of Standards Report
,” .
28.
Fisher
,
J. C.
,
1948
, “
The Fracture of Liquids
,”
J. Appl. Phys.
,
19
(
11
), p.
1062
1067
. 0021-897910.1063/1.1698012
29.
Roi
,
N. A.
,
1957
, “
The Initiation and Development of Ultrasonic Cavitation
,”
Sov. Phys.
,
3
(
1
), pp.
1
15
.
30.
Perry
,
R. H.
,
Green
,
D. W.
, and
Maloney
,
J. O.
,
1985
,
Perry’s Chemical Engineer’s Handbook
, 6th Ed.
McGraw Hill Inc.
,
New York, NY
.
31.
Davis
,
C. B.
,
1990
, “
Pump Cavitation in Savannah River Reactors During Loss-of-Coolant Accidents
,”
Nucl. Technol.
,
90
(
3
), pp.
286
293
.
You do not currently have access to this content.