Abstract

In this study, heat fluxes qc for condensation from steam and air mixtures on vertical flat plates were evaluated by using existing experimental data and qc correlations, in order to provide one of boundary conditions for computational fluid dynamics (CFD) analysis in a primary containment vessel (PCV) of nuclear power plants during accident conditions. Existing qc,fc correlations for forced convection condensation overestimated or underestimated experimental data qc,exp measured with the CONAN facility, and a combination of the selected existing qc,fc correlation and the suction correction factor θC was proposed to obtain good agreement between the qc,cal values computed with the combination and the qc,exp values. For natural convection condensation, it was found that the qc,nc values were largely different between those measured in closed vessels with evaporation and condensation and in flow channels with decreasing the mixture velocity, and hence, the present evaluation focused on qc,nc obtained in the flow channels. It was also found that uncertainty became large when the qc,nc values were computed by changing the Sherwood number Shfc in the qc,fc correlation to Shnc for natural convection. The qc,exp values measured with the COPAIN facility were well expressed by the qc,nc correlation proposed by Corradini (1984, “Turbulent Condensation on a Cold Wall in the Presence of a Noncondensable Gas,” Nucl. Technol., 64(2), pp. 186–195), but the published data were few. Therefore, collection of experimental or numerical qc,nc values is necessary in the future.

References

1.
de la Rosa
,
J. C.
,
Escrivá
,
A.
,
Herranz
,
L. E.
,
Cicero
,
T.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Review on Condensation on the Containment Structure
,”
Prog. Nucl. Energy
,
51
(
1
), pp.
32
66
.10.1016/j.pnucene.2008.01.003
2.
Huang
,
J.
,
Zhang
,
J.
, and
Wang
,
L.
,
2015
, “
Review of Vapor Condensation Heat and Mass Transfer in the Presence of Non-Condensable Gas
,”
Appl. Therm. Eng.
,
89
(5), pp.
469
484
.10.1016/j.applthermaleng.2015.06.040
3.
Yadav
,
M. K.
,
Khandekar
,
S.
, and
Sharma
,
P. K.
,
2016
, “
An Integrated Approach to Steam Condensation Studies Inside Reactor Containments: A Review
,”
Nucl. Eng. Des.
,
300
, pp.
181
209
.10.1016/j.nucengdes.2016.01.004
4.
Liu
,
F.
,
Sun
,
Z.
,
Ding
,
M.
, and
Bian
,
H.
,
2021
, “
Research Progress of Hydrogen Behaviors in Nuclear Power Plant Containment Under Severe Accident Conditions
,”
Int. J. Hydrogen Energy
,
46
(
73
), pp.
36477
36502
.10.1016/j.ijhydene.2021.08.151
5.
Dehbi
,
A.
,
2015
, “
A Generalized Correlation for Steam Condensation Rates in the Presence of Air Under Turbulent Free Convection
,”
Int. J. Heat Mass Transfer
,
86
, pp.
1
15
.10.1016/j.ijheatmasstransfer.2015.02.034
6.
Dehbi
,
A.
,
2020
, “
Correcting for Tube Curvature Effects on Condensation in the Presence of a Noncondensable Gas in Laminar Regimes
,”
Int. J. Heat Mass Transfer
,
151
, p.
119384
.10.1016/j.ijheatmasstransfer.2020.119384
7.
Akaki
,
H.
,
Kataoka
,
Y.
, and
Murase
,
M.
,
1995
, “
Measurement of Condensation Heat Transfer Coefficient Inside a Vertical Tube in the Presence of Noncondensable Gas
,”
J. Nucl. Sci. Technol.
,
32
(
6
), pp.
517
526
.10.1080/18811248.1995.9731739
8.
Liao
,
Y.
, and
Vierow
,
K.
,
2007
, “
A Generalized Diffusion Layer Model for Condensation of Vapor With Noncondensable Gases
,”
ASME J. Heat Mass Transfer Trans. ASME
,
129
(
8
), pp.
988
994
.10.1115/1.2728907
9.
Cheng
,
X.
,
Bazin
,
P.
,
Cornet
,
P.
,
Hittner
,
D.
,
Jackson
,
J. D.
,
Lopez Jimenez
,
J.
,
Naviglio
,
A.
,
Oriolo
,
F.
, and
Petzold
,
H.
,
2001
, “
Experimental Data Base for Containment Thermalhydraulic Analysis
,”
Nucl. Eng. Des.
,
204
(
1–3
), pp.
267
284
.10.1016/S0029-5493(00)00311-3
10.
Ambrosini
,
W.
,
Forgione
,
N.
,
Manfredini
,
A.
, and
Oriol
,
F.
,
2006
, “
On Various Forms of the Heat and Mass Transfer Analogy: Discussion and Application to Condensation Experiments
,”
Nucl. Eng. Des.
,
236
(
9
), pp.
1013
1027
.10.1016/j.nucengdes.2005.10.009
11.
Mimouni
,
S.
,
Foissac
,
A.
, and
Lavieville
,
J.
,
2011
, “
CFD Modelling of Wall Steam Condensation by a Two-Phase Flow Approach
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4445
4455
.10.1016/j.nucengdes.2010.09.020
12.
Bucci
,
M.
,
2009
, “
Experimental and Computational Analysis of Condensation Phenomena for the Thermal-Hydraulic Analysis of LWRs Containments
,”
Ph.D. thesis
,
University of Pisa
, Pisa, Italy.https://core.ac.uk/download/pdf/14697139.pdf
13.
Corradini
,
M. L.
,
1984
, “
Turbulent Condensation on a Cold Wall in the Presence of a Noncondensable Gas
,”
Nucl. Technol.
,
64
(
2
), pp.
186
195
.10.13182/NT84-A33341
14.
Benteboula
,
S.
, and
Dabbene
,
F.
,
2020
, “
Modeling of Wall Condensation in the Presence of Noncondensable Light Gas
,”
Int. J. Heat Mass Transfer
,
151
, p.
119313
.10.1016/j.ijheatmasstransfer.2020.119313
15.
Dehbi
,
A.
,
Janasz
,
F.
, and
Bell
,
B.
,
2013
, “
Prediction of Steam Condensation in the Presence of Noncondensable Gases Using a CFD-Based Approach
,”
Nucl. Eng. Des.
,
258
, pp.
199
210
.10.1016/j.nucengdes.2013.02.002
16.
Bian
,
H.
,
Sun
,
Z.
,
Zhang
,
N.
,
Meng
,
Z.
, and
Ding
,
M.
,
2019
, “
A New Modified Diffusion Boundary Layer Steam Condensation Model in the Presence of Air Under Natural Convection Conditions
,”
Int. J. Therm. Sci.
,
145
, p.
105948
.10.1016/j.ijthermalsci.2019.05.004
17.
Murase
,
M.
,
Utanohara
,
Y.
,
Hosokawa
,
S.
, and
Tomiyama
,
A.
,
2021
, “
Prediction Method of Condensation Heat Transfer From Steam-Air Mixture for CFD Application
,”
Jpn. J. Multiphase Flow
,
35
(
3
), pp.
453
462
.10.3811/jjmf.2021.028
18.
Bucci
,
M.
,
Ambrosini
,
W.
, and
Forgione
,
N.
,
2013
, “
Experimental and Computational Analysis of Steam Condensation in the Presence of Air and Helium
,”
Nucl. Technol.
,
181
(
1
), pp.
115
132
.10.13182/NT13-A15761
19.
de la Rosa
,
J. C.
,
Herranz
,
L. E.
, and
Muñoz-Cobo
,
J. L.
,
2009
, “
Analysis of the Suction Effect on the Mass Transfer When Using the Heat and Mass Transfer Analogy
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
2042
2055
.10.1016/j.nucengdes.2009.06.003
20.
Murase
,
M.
,
Utanohara
,
Y.
, and
Tomiyama
,
A.
,
2022
, “
Prediction Method for Condensation Heat Transfer in the Presence of Noncondensable Gas for Computational Fluid Dynamics Application
,”
J. Nucl. Eng. Radiat. Sci.
,
8
, p.
031404
.10.1115/1.4053051
21.
JSME,
2009
,
Heat Transfer
, 5th ed.,
Maruzen
,
Tokyo, Japan
, Japanese Society of Mechanical Engineers [in Japanese].
22.
Punetha
,
M.
, and
Khandekar
,
S.
,
2017
, “
A CFD Based Modelling Approach for Predicting Steam Condensation in the Presence of Non-Condensable Gases
,”
Nucl. Eng. Des.
,
324
, pp.
280
296
.10.1016/j.nucengdes.2017.09.007
You do not currently have access to this content.