To address the need to develop new nuclear reactors with higher thermal efficiency, a group of countries, including Canada, have initiated an international collaboration to develop the next generation of nuclear reactors called Generation IV. The Generation IV International Forum (GIF) Program has narrowed design options of the nuclear reactors to six concepts, one of which is supercritical water-cooled reactor (SCWR). Among the Generation IV nuclear-reactor concepts, only SCWRs use water as a coolant. The SCWR concept is considered to be an evolution of water-cooled reactors (pressurized water reactors (PWRs), boiling water reactors (BWRs), pressurized heavy water reactors (PHWRs), and light-water, graphite-moderated reactors (LGRs)), which comprise 96% of the current fleet of operating nuclear power reactors and are categorized under Generation II, III, and III+ nuclear reactors. The latter water-cooled reactors have thermal efficiencies of 30–36%, whereas the evolutionary SCWR will have a thermal efficiency of approximately 45–50%. In terms of a pressure boundary, SCWRs are classified into two categories, namely, pressure-vessel (PV) SCWRs and pressure-channel (PCh) SCWRs. A generic pressure-channel SCWR, which is the focus of this paper, operates at a pressure of 25 MPa with inlet and outlet coolant temperatures of 350°C and 625°C, respectively. The high outlet temperature and pressure of the coolant make it possible to improve thermal efficiency. On the other hand, high operating temperature and pressure of the coolant introduce a challenge for material selection and core design. In this view, there are two major issues that need to be addressed for further development of SCWR. First, the reactor core should be designed, which depends on a fuel-channel design. Second, a nuclear fuel and fuel cycle should be selected. Several fuel-channel designs have been proposed for SCWRs. These fuel-channel designs can be classified into two categories: direct-flow and reentrant channel concepts. The objective of this paper is to study thermal-hydraulic and neutronic aspects of a reentrant fuel-channel design. With this objective, a thermal-hydraulic code has been developed in MATLAB, which calculates fuel-centerline-temperature, sheath-temperature, coolant-temperature, and heat-transfer-coefficient profiles. A lattice code and diffusion code were used to determine a power distribution inside the core. Then, heat flux in a channel with the maximum thermal power was used as an input into the thermal-hydraulic code. This paper presents a fuel centerline temperature of a newly designed fuel bundle with UO2 as a reference fuel. The results show that the maximum fuel centerline temperature exceeds the design temperature limits of 1850°C for fuel.

References

1.
Pioro
,
I.
, and
Kirillov
,
P.
,
2013
, “
Current Status of Electricity Generation in the World
,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
(
Energy Book Series
, Vol.
1
), A. Méndez-Vilas, ed.,
Formatex Research Center
,
Spain
, pp.
783
795
. http://www.formatex.info/energymaterialsbook/book/783-795.pdf.
2.
Pioro
,
I.
,
2012
, “
Nuclear Power as a Basis for Future Electricity Production in the World
,”
Current Research in Nuclear Reactor Technology in Brazil and Worldwide
, A. Z. Mesquita and H. C. Rezende, eds.,
INTECH
,
Rijeka, Croatia
, pp.
211
250
. http://www.intechopen.com/books/current-research-in-nuclear-reactor-technology-in-brazil-and-worldwide/nuclear-power-as-a-basis-for-future-electricity-production-in-the-world-generation-iii-and-iv-reacto.
3.
Pioro
,
I.
,
2014
, “
Nuclear Power as a Basis for Future Electricity Generation
,”
Proceedings of the 19th Pacific Basin Nuclear Conference (PBNC 2014)
,
August 24–28
,
Vancouver, BC, Canada
, Paper No. 386,
19
pp.
4.
Sovacool
,
B. K.
,
2008
, “
Valuing the Greenhouse Gas Emissions From Nuclear Power: A critical survey
,”
Energy Policy
,
36
(
8
), pp.
2950
2963
.
5.
Pioro
,
I.
, and
Kirillov
,
P.
,
2013
, “
Current Status of Electricity Generation at Nuclear Power Plants
,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
(
Energy Book Series
, Vol.
1
), A. Méndez-Vilas, ed.,
Formatex Research Center
,
Spain
, pp.
806
817
. http://www.formatex.info/energymaterialsbook/book/806-817.pdf.
6.
DOE USA, Nuclear Energy Research Advisory Committee
,
2002
, “
A Technology Roadmap for Generation IV Nuclear Energy Systems
,”
The Generation IV International Forum
. http://www.ne.doe.gov/genIV/documents/gen_iv_roadmap.pdf (Retrieved July 12, 2010).
7.
Pioro
,
I.
, and
Kirillov
,
P.
,
2013
, “
Generation IV Nuclear Reactors as a Basis for Future Electricity Production in the World
,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
(
Energy Book Series
, Vol.
1
), A. Méndez-Vilas, ed.,
Formatex Research Center
,
Spain
, pp.
818
830
. http://www.formatex.info/energymaterialsbook/book/818-830.pdf.
8.
Pioro
,
I. L.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
New York, NY
,
334
pp.
9.
Peiman
,
W.
,
Pioro
,
I.
, and
Gabriel
,
K.
,
2012
, “
Thermal Aspects of Conventional and Alternative Fuels in SuperCritical Water-Cooled Reactor (SCWR) Applications
,”
Nuclear Reactors
, A. Z. Mesquita, ed.,
INTECH
,
Rijeka, Croatia
,
pp.
123
156
. http://www.intechopen.com/books/nuclear-reactors/-thermal-aspects-of-conventional-and-alternative-fuels-in-supercritical-water-cooled-reactor-scwr-ap
10.
Pioro
,
I.
, and
Kirillov
,
P.
,
2013
, “
Current Status of Electricity Generation at Thermal Power Plants
,”
Materials and Processes for Energy: Communicating Current Research and Technological Developments
(
Energy Book Series
, Vol.
1
), A. Méndez-Vilas, ed.,
Formatex Research Center
,
Spain
, pp.
796
805
. http://www.formatex.info/energymaterialsbook/book/796-805.pdf.
11.
Pioro
,
I.
,
Mokry
,
S.
,
Peiman
,
W.
,
Grande
,
L.
, and
Saltanov
,
E.
,
2010
, “
Supercritical Water-Cooled Nuclear Reactors: NPP Layouts and Thermal Design Options of Pressure Channels
,”
Proceedings of the 17th Pacific Basin Nuclear Conference (PBNC-2010)
,
Cancun, Mexico
.
12.
Saltanov
,
E.
, and
Pioro
,
I.
,
2011
, “
World Experience in Nuclear Steam Reheat
,”
Nuclear Power: Operation, Safety and Environment
, P. V. Tsvetkov, ed.,
INTECH
,
Rijeka, Croatia
,
pp.
3
28
. http://www.intechopen.com/books/nuclear-power-operation-safety-and-environment/world-experience-in-nuclear-steam-reheat.
13.
Naidin
,
M.
,
Pioro
,
I.
,
Duffey
,
R.
,
Zirn
,
U.
, and
Mokry
,
S.
,
2009
, “
SCW NPPs: Layouts and Thermodynamic Cycles Options
,”
Proceedings of International Conference Nuclear Energy for New Europe
,
Bled, Slovenia
,
Sept. 14–17
, Paper No. 704,
12
pp.
14.
Abdalla
,
A.
,
King
,
K.
,
Qureshi
,
A.
,
Draper
,
S.
,
Peiman
,
W.
,
Joel
,
J.
, et al
2011
, “
Thermalhydraulic Analysis of 43-, 54-, 64-Element Bundles with UO2 Plus SiC Fuel for SuperCritical Water-Cooled Reactors
,”
Proceedings of the 19th International Conference on Nuclear Engineering (ICONE-19)
,
Osaka, Japan
,
Oct. 24–25
, Paper No. 43692,
10
pp.
15.
Grande
,
L.
,
Mikhael
,
S.
,
Villamere
,
B.
,
Rodriguez-Prado
,
A.
,
Allison
,
L.
,
Peiman
,
W.
, and
Pioro
,
I.
,
2010
, “
Thermal Aspects of Using Uranium Nitride in Supercritical Water-Cooled Nuclear Reactors
,”
Proceedings of the 18th International Conference on Nuclear Engineering (ICONE-18)
,
Xi’an, China
,
May 17–21
, Paper No. 29790,
8
pp.
16.
Pioro
,
I.
, and
Mokry
,
S.
,
2011
, “
Thermophysical Properties at Critical and Supercritical Conditions
,”
Heat Transfer: Theoretical Analysis, Experimental Investigations and Industrial Systems
, A. Belmiloudi, ed.,
INTECH
,
Rijeka, Croatia
, pp.
573
592
. http://www.intechopen.com/books/heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems/thermophysical-properties-at-critical-and-supercritical-pressures.
17.
IAEA
,
2008
,
Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Collection of Data
,
International Atomic Energy Agency
,
Vienna, Austria
,
pp.
191
.
18.
Kirillov
,
P. L.
,
Terent’eva
,
M. I.
, and
Deniskina
,
N. B.
,
2007
,
Thermophysical Properties of Nuclear Engineering Materials
, 3rd ed.,
IzdAT Publ. House
,
Moscow, Russia
.
19.
Frost
,
B. R.
,
1963
, “
The Carbides of Uranium
,”
J. Nucl. Mater.
,
10
(
4
), pp.
265
300
.
20.
Cox
,
D.
, and
Cronenberg
,
A.
,
1977
, “
A Theoretical Prediction of the Thermal Conductivity of Uranium Carbide Vapor
,”
J. Nucl. Mater.
,
67
(
3
), pp.
326
331
.
21.
Lundberg
L. B.
, and
Hobbins
,
R. R.
,
1992
, “
Nuclear Fuels for Very High Temperature Applications
,”
Proceedings of the Intersociety Energy Conversion Engineering Conference
,
San Diego, CA
.
22.
Leitnaker
,
J. M.
, and
Godfrey
,
T. G.
,
1967
, “
Thermodynamic Properties of Uranium Carbide
,”
J. Nucl. Mater.
,
21
(
2
), pp.
175
189
.
23.
Khan
,
J. A.
,
Knight
,
T. W.
,
Pakala
,
S. B.
,
Jiang
,
W.
, and
Fang
,
R.
,
2010
, “
Enhanced Thermal Conductivity for LWR Fuel
,”
J. Nucl. Technol.
,
169
(
1
), pp.
61
72
.
24.
Solomon
,
A. A.
,
Revankar
,
S.
, and
McCoy
,
J. K.
,
2005
, “
Enhanced Thermal Conductivity Oxide Fuels
,” US Department of Energy, Project No. 02 180.
25.
Ishimoto
,
S.
,
Hirai
,
M.
,
Ito
,
K.
, and
Korei
,
Y.
,
1996
, “
Thermal Conductivity of UO2-BeO Pellet
,”
J. Nucl. Sci. Technol.
,
33
(
2
), pp.
134
140
.
26.
Maghsoudi
,
S.
,
Peiman
,
W.
,
Pioro
,
I.
, and
Gabriel
,
K.
,
2014
, “
Pressure Drop Analysis of a Re-entrant Fuel Channel in a Pressure-Channel Type Supercritical Water-Cooled Reactor
,”
Proceedings of the 22nd International Conference on Nuclear Engineering (ICONE-22)
,
Prague, Czech Republic
,
July 7–11
, Paper No. 30616,
9
pp.
27.
Chow
,
C. K.
, and
Khartabil
,
H. F.
,
2008
, “
Conceptual Fuel Channel Designs for CANDU-SCWR
,”
J. Nucl. Eng. Technol.
,
40
(
2
), pp.
1
8
.
28.
Yetisir
,
M.
,
Diamond
,
W.
,
Leung
,
L. K. H.
,
Martin
,
D.
, and
Duffey
,
R.
,
2011
, “
Conceptual Mechanical Design for a Pressure-Tube Type Supercritical Water-Cooled Reactor
,”
Proceedings of the 5th International Symposium on SCWR (ISSCWR-5)
,
Vancouver, BC, Canada
.
29.
King
,
K.
,
Abdalla
,
A.
,
Qureshi
,
A.
,
Draper
,
S.
,
Peiman
,
W.
, and
Pioro
,
I.
,
2011
, “
Thermal Aspects of Using ThO2 in a 54- and 64-Element Fuel Bundle Designed for SCWR Application
,”
Proceedings of the 19th International Conference on Nuclear Engineering (ICONE-19)
,
Osaka, Japan
,
October 24–25
, Paper No. 43507,
10
p.
30.
Leung
,
L. K. H.
,
2008
, “
Effect of CANDU Bundle-Geometry Variation on Dryout Power
,”
Proceedings of the 16th International Conference on Nuclear Engineering (ICONE-16)
,
Orlando, FL
, Paper No. 48827,
8
pp.
31.
McDonald
,
M. H.
,
Hyland
,
B.
,
Hamilton
,
H.
, et al,
2011
, “
Pre-Conceptual Fuel Design Concepts for the Canadian Supercritical Water-Cooled Reactor
,”
Proceedings of the 5th International Symposium on SCWR (ISSCWR-5)
,
Vancouver, BC, Canada
.
32.
Reisch
,
F.
,
2009
,
High Pressure Boiling Water Reactor, HP–BWR
,
Royal Institute of Technology, Nuclear Power Safety
,
Stockholm, Sweden
.
33.
Marleau
,
G.
,
Hébert
,
A.
, and
Roy
,
R.
,
2011
,
A User Guide for DRAGON Version 4
.
34.
Sekki
,
D.
,
Hébert
,
A.
, and
Chambon
,
R.
,
2011
,
A User Guide for DONJON Version 4
.
35.
IAEA
,
2007
,
WIMS-D Library Update
,
International Atomic Energy Agency
,
Vienna
.
36.
NIST REFPROP, Reference Fluid Thermodynamic and Transport Properties—REFPROP
,
2010
,
NIST Standard Reference Database 23, Ver. 9.0
, E. W. Lemmon, M. L. Huber, and M. O. McLinden, eds.,
U.S. Department of Commerce, National Institute of Standards and Technology
,
Boulder, CO
.
37.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
, 7th ed.,
John Wiley and Sons
,
New York, NY
,
1048
pp.
38.
Mokry
,
S.
,
Pioro
,
I. L.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
J. Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.
39.
Pioro
,
I.
, and
Mokry
,
S.
,
2011
, “
Heat Transfer to Fluids at Supercritical Pressures
,”
Heat Transfer: Theoretical Analysis, Experimental Investigations and Industrial Systems
, A. Belmiloudi, ed.,
INTECH
,
Rijeka, Croatia
,
pp.
481
504
. http://www.intechopen.com/books/heat-transfer-theoretical-analysis-experimental-investigations-and-industrial-systems/heat-transfer-to-supercritical-fluids.
40.
Zahlan
,
H.
,
Groeneveld
,
D. C.
,
Tavoularis
,
S.
,
Mokry
,
S.
, and
Pioro
,
I.
,
2011
, “
Assessment of Supercritical Heat Transfer Prediction Methods
,”
Proceedings of the 5th International Symposium on SCWR (ISSCWR-5)
,
Vancouver, BC, Canada
,
March 13–16
, Paper No. P008,
20
pp.
41.
Cochran
,
R. G.
, and
Tsoulfanidis
,
N.
,
1999
,
The Nuclear Fuel Cycle: Analysis and Management
, 2nd ed.,
ANS
,
La Grange Park, IL
.
You do not currently have access to this content.