Over the years, implantable sensor technology has found many applications in healthcare. Research projects have aimed at improving power supply lifetime for longevity of an implanted sensor system. Miniature power sources, inspired from the biofuel cell principle, can utilize enzymes (proteins) as catalysts to produce energy from fuel(s) that are perennial in the human body. Bio-nanocatalytic hierarchical structures, clusters made of enzyme molecules, can be covalently linked to the electrode’s surface to provide better enzyme loading and sustained activity. Carbon nanotube base electrodes, with high surface area for direct electron transfer, and enzyme clusters can achieve efficient enzymatic redox reaction. A redox pair of such bioelectrodes can make up a power source with improved performance. In this study, we have investigated high throughput processes for coupling enzyme catalysts with power harvesting mechanisms via a screen printing process and solution processing. The process incorporates enzyme (glucosse oxidase and catalase) micro-/nanocluster immobilization on the surface of carboxylated (functionalized) carbon nanotubes with screen printed electrodes. The 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide amide linkage chemistries were used to bind the enzyme molecules to nanotube surface, and bis[sulfosuccinimidyl] suberate (BS3) was used as the cross-linker between enzymes. Optimized enzyme cross-linking was obtained after 25 min at room temperature with 0.07 mmol BS3/nmol of enzymes, with which 44% of enzymes were immobilized onto the surface of the bioelectrode with only 24% enzyme activity lost. A cell, redox pair of bioelectrodes, was tested under continuous operation. It was able to maintain most of the enzyme activity for 7 days before complete deactivation at 16 days. Thus, the power harvesting mechanism was able to produce power continuously for 7 days. The results were also analyzed to identify impeding factors such as competitive inhibition by reaction byproduct and cathode design, and methods to rectify them have been discussed. Coupling this new and improved nanobiopower cell with a product removal mechanism and enzyme mutagenesis should provide enzyme protection and longevity. This would bring the research one step closer to development of compatible implantable battery technology for medical applications.

1.
Xie
,
J.
,
Wang
,
S.
,
Aryasomayajula
,
L.
, and
Varadan
,
V. K.
, 2007, “
Platinum Decorated Carbon Nanotubes for Highly Sensitivity Amperometric Glucose Sensing
,”
Nanotechnology
0957-4484,
18
(
6
), p.
065503
.
2.
Barone
,
P. W.
,
Baik
,
S.
, and
Strano
,
M. S.
, 2005, “
Probing the Activity of Single Walled Carbon Nanotube-Enzyme Complexes
,”
Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.)
0032-3934,
46
(
1
), pp.
218
225
.
3.
Wang
,
S. G.
,
Zhang
,
Q.
,
Wang
,
R.
, and
Yoon
,
S. F.
, 2003, “
A Novel Multi-Walled Carbon Nanotube-Based Biosensor for Glucose Detection
,”
Biochem. Biophys. Res. Commun.
0006-291X,
311
(
3
), pp.
572
576
.
4.
Jung
,
S.
,
Chae
,
Y.
,
Yoon
,
J.
,
Cho
,
B.
, and
Ryu
,
K.
, 2005, “
Immobilization of Glucose Oxidase on Multi-Wall Carbon Nanotubes for Biofuel Cell Applications
,”
J. Microbiol. Biotechnol.
,
15
(
2
), pp.
234
238
.
5.
Koopal
,
C. G. J.
, and
Nolte
,
R. J. M.
, 1994, “
Kinetic Study of the Performance of Third-Generation Biosensors
,”
Bioelectrochem. Bioenerg.
0302-4598,
33
(
1
), pp.
45
53
.
6.
Wen
,
D.
,
Liu
,
Y.
,
Yang
,
G.
, and
Dong
,
S.
, 2007, “
Electrochemistry of Glucose Oxidase Immobilized on the Carbon Nanotube Wrapped by Polyelectrolyte
,”
Electrochim. Acta
0013-4686,
52
(
16
), pp.
5312
5317
.
7.
Beyene
,
N. W.
,
Moderegger
,
H.
, and
Kalcher
,
K.
, 2004, “
Simple and Effective Procedure for Immobilization of Oxidases Onto MnO2-Bulk-Modified, Screen-Printed Carbon Electrodes
,”
S. Afr. J. Chem.
0379-4350,
57
, pp.
1
7
.
8.
Ma
,
Y.
,
Gao
,
Q.
, and
Yang
,
X.
, 2005, “
Immobilization of Glycosylated Enzymes on Carbon Electrodes, and Its Application in Biosensors
,”
Mikrochim. Acta
0026-3672,
150
(
1
), pp.
21
26
.
9.
Rai
P.
,
Ho
T.
,
Xie
J.
,
Hestekin
J. A.
, and
Varadan
V. K.
, 2010, “
Glucose Driven Nanobiopower Cells for Biomedical Applications
,”
Journal of Nanotechnology in Engineering and Medicine
,
1
(
2
), p.
021009
.
10.
Kim
,
J.
,
Jia
,
H.
, and
Wang
,
P.
, 2006, “
Challenges in Biocatalysis for Enzyme-Based Biofuel Cells
,”
Biotechnol. Adv.
0734-9750,
24
, pp.
296
308
.
11.
Kim
,
B. C.
,
Nai
,
S.
,
Kim
,
J.
,
Kwak
,
J. H.
,
Grate
,
J. W.
,
Kim
,
S. H.
, and
Gu
,
M. B.
, 2005, “
Preparation of Biocatalytic Nanofibers With High Activity and Stability via Enzyme Aggregate Coating on Polymer Nanofibers
,”
Nanotechnology
0957-4484,
16
, pp.
S382
S388
.
12.
Lee
,
J.
,
Kim
,
J.
,
Kim
,
J.
,
Jia
,
H.
,
Kim
,
M. I.
,
Kwak
,
J. H.
,
Jin
,
S.
,
Dohnalkova
,
A.
,
Park
,
H. G.
,
Chang
,
H. N.
,
Wang
,
P.
,
Grate
,
J. W.
, and
Hyeon
,
T.
, 2005, “
Simple Synthesis of Hierarchically Ordered Mesocellular Mesoporous Silica Materials Hosting Crosslinked Enzyme Aggregates
,”
Small
1613-6810,
1
(
7
), pp.
744
753
.
13.
Bautista
,
F. M.
,
Campelo
,
J. M.
,
Garcia
,
A.
,
Jurado
,
A.
,
Luna
,
D.
, and
Romero
,
A. A.
, 2001, “
Properties of a Glucose Oxidase Covalently Immobilized on Amorphous AlPO4 Support
,”
Journal of Molecular Catalysis B: Enzymatic
,
11
(
4–6
), pp.
567
577
.
14.
Sung
,
Y. -M.
,
Park
,
K. -S.
,
Lee
,
Y. -J.
,
Chae
,
W. -S.
, and
Song
,
Y. -W.
, 2005, “
Immobilization of Glucose Oxidase Using Pyrrole-Titania Nanohybrids for Electrochemical Biosensor Applications
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
2
), pp.
H24
H26
.
15.
Curulli
,
A.
,
Cusmà
,
A.
,
Kaciulis
,
S.
,
Padeletti
,
G.
,
Pandolfi
,
L.
,
Valentini
,
F.
, and
Viticoli
,
M.
, 2006, “
Immobilization of GOD and HRP Enzymes on Nanostructured Substrates
,”
Surf. Interface Anal.
0142-2421,
38
(
4
), pp.
478
481
.
16.
Blin
,
J. L.
,
Gérardin
,
C.
,
Carteret
,
C.
,
Rodehüser
,
L.
,
Selve
,
C.
, and
Stébé
,
M. J.
, 2005, “
Direct One-Step Immobilization of Glucose Oxidase in Well-Ordered Mesostructured Silica Using a Nonionic Fluorinated Surfactant
,”
Chem. Mater.
0897-4756,
17
(
6
), pp.
1479
1486
.
17.
Fischback
,
M.
,
Youn
,
J. K.
,
Zhao
,
X.
,
Wang
,
P.
,
Park
,
H. G.
,
Chang
,
H. N.
,
Kim
,
J.
, and
Ha
,
S.
, 2006, “
Miniature Biofuel Cells With Improved Stability Under Continuous Operation
,”
Electroanalysis
1040-0397,
18
(
19–20
), pp.
2016
2022
.
18.
Kafi
,
A. K. M.
,
Lee
,
D.
,
Park
,
S.
, and
Kwon
,
Y.
, 2006, “
DNA as a Support for Glucose Oxidase Immobilization at Prussian Blue-Modified Glassy Carbon Electrode in Biosensor Preparation
,”
J. Nanosci. Nanotechnol.
1533-4880,
6
(
11
), pp.
3539
3542
.
19.
Pekel
,
N.
,
Salih
,
B.
, and
Gueven
,
O.
, 2005, “
Enhancement of Stability of Glucose Oxidase by Immobilization Onto Metal Ion-Chelated Poly(N-Vinyl Imidazole) Hydrogels
,”
J. Biomater. Sci., Polym. Ed.
0920-5063,
16
(
2
), pp.
253
266
.
20.
Khani
,
Z.
,
Jolivalt
,
C.
,
Cretin
,
M.
,
Tingry
,
S.
, and
Innocent
,
C.
, 2006, “
Alginate/carbon Composite Beads for Laccase and Glucose Oxidase Encapsulation: Application in Biofuel Cell Technology
,”
Biotechnol. Lett.
0141-5492,
28
(
22
), pp.
1779
1786
.
21.
Masson
,
J. -F.
,
Kranz
,
C.
,
Booksh
,
K. S.
, and
Mizaikoff
,
B.
, 2007, “
Improved Sensitivity and Stability of Amperometric Enzyme Microbiosensors by Covalent Attachment to Gold Electrodes
,”
Biosens. Bioelectron.
0956-5663,
23
(
3
), pp.
355
361
.
22.
Betancor
,
L.
,
López-Gallego
,
F.
,
Hidalgo
,
A.
,
Alonso-Morales
,
N.
,
Dellamora-Ortiz
,
G.
,
Guisán
,
J. M.
, and
Fernández-Lafuente
,
R.
, 2006, “
Preparation of a Very Stable Immobilized Biocatalyst of Glucose Oxidase From Aspergillus niger
,”
J. Biotechnol.
0168-1656,
121
(
2
), pp.
284
289
.
23.
López-Gallego
,
F.
,
Betancor
,
L.
,
Mateo
,
C.
,
Hidalgo
,
A.
,
Alonso-Morales
,
N.
,
Dellamora-Ortiz
,
G.
,
Guisán
,
J. M.
, and
Fernández-Lafuente
,
R.
, 2005, “
Enzyme Stabilization by Glutaraldehyde Crosslinking of Adsorbed Proteins on Aminated Supports
,”
J. Biotechnol.
0168-1656,
119
(
1
), pp.
70
75
.
24.
Wong
,
F.
, and
Abdul-Aziz
,
A.
, 2008, “
Comparative Study of Poly(Vinyl Alcohol)-Based Support Materials for the Immobilization of Glucose Oxidase
,”
J. Chem. Technol. Biotechnol.
0268-2575,
83
(
1
), pp.
41
46
.
25.
Cao
,
H.
,
Zhu
,
Y.
,
Tang
,
L.
,
Yang
,
X.
, and
Li
,
C.
, 2008, “
A Glucose Biosensor Based on Immobilization of Glucose Oxidase Into 3D Macroporous TiO2
,”
Electroanalysis
1040-0397,
20
(
20
), pp.
2223
2228
.
26.
Gade
,
V. K.
,
Shirale
,
D. J.
,
Gaikwad
,
P. D.
,
Savale
,
P. A.
,
Kakde
,
K. P.
,
Kharat
,
H. J.
, and
Shirsat
,
M. D.
, 2006, “
Immobilization of GOD on Electrochemically Synthesized Ppy-PVS Composite Film by Cross-Linking via Glutaraldehyde for Determination of Glucose
,”
React. Funct. Polym.
1381-5148,
66
(
12
), pp.
1420
1426
.
27.
Han
,
K.
,
Wu
,
Z.
,
Lee
,
J.
,
Ahn
,
I. -S.
,
Park
,
J. W.
,
Min
,
B. R.
, and
Lee
,
K.
, 2005, “
Activity of Glucose Oxidase Entrapped in Mesoporous Gels
,”
Biochem. Eng. J.
1369-703X,
22
(
2
), pp.
161
166
.
28.
Ying
,
L.
,
Kang
,
E. T.
, and
Neoh
,
K. G.
, 2002, “
Covalent Immobilization of Glucose Oxidase on Microporous Membranes Prepared From Poly(Vinylidene Fluoride) With Grafted Poly(Acrylic Acid) Side Chains
,”
J. Membr. Sci.
0376-7388,
208
(
1–2
), pp.
361
374
.
29.
Yoshimoto
,
M.
,
Sato
,
M.
,
Wang
,
S.
,
Fukunaga
,
K.
, and
Nakao
,
K.
, 2006, “
Structural Stability of Glucose Oxidase Encapsulated in Liposomes to Inhibition by Hydrogen Peroxide Produced During Glucose Oxidation
,”
Biochem. Eng. J.
1369-703X,
30
(
2
), pp.
158
163
.
30.
Zhang
,
J.
,
Feng
,
M.
, and
Tachikawa
,
H.
, 2007, “
Layer-by-layer Fabrication and Direct Electrochemistry of Glucose Oxidase on Single Wall Carbon Nanotubes
,”
Biosens. Bioelectron.
0956-5663,
22
(
12
), pp.
3036
3041
.
31.
Zhao
,
J. S.
,
Yang
,
Z. Y.
,
Zhang
,
Y. H.
, and
Yang
,
Z. Y.
, 20042004, “
Immobilization of Glucose Oxidase on Cellulose/Cellulose Acetate Membrane and Its Detection by Scanning Electrochemical Microscope (SECM)
,”
Chin. Chem. Lett.
1001-8417,
15
(
11
), pp.
1361
1364
.
32.
Tse
,
P. H. S.
,
Leypoldt
,
J. K.
, and
Gough
,
D. A.
, 1987, “
Determination of the Intrinsic Kinetic Constants of Immobilized Glucose Oxidase and Catalase
,”
Biotechnol. Bioeng.
0006-3592,
29
(
6
), pp.
696
704
.
33.
Zhu
,
L.
,
Yang
,
R.
,
Zhai
,
J.
, and
Tian
,
C.
, 2007, “
Bienzymatic Glucose Biosensor Based on Co-Immobilization of Peroxidase and Glucose Oxidase on a Carbon Nanotubes Electrode
,”
Biosens. Bioelectron.
0956-5663,
23
(
4
), pp.
528
535
.
34.
Tomotani
,
E. J.
, and
Vitolo
,
M.
, 2007, “
Immobilized Glucose Oxidase as a Catalyst to the Conversion of Glucose Into Gluconic Acid Using a Membrane Reactor
,”
Enzyme Microb. Technol.
0141-0229,
40
(
5
), pp.
1020
1025
.
35.
Kalousova
,
E.
,
Benes
,
L.
,
Votinsky
,
J.
, and
Handlir
,
K.
, 1991, “
Preparation and Application of Biosensors: Testing of Oxygen Sensors for Application in Enzyme Analysis
,”
Sbornik Vysoke Skoly Chemicko-Technologicke v Praze E: Potraviny
,
62
, pp.
31
41
.
36.
Won
,
B. Y.
,
Choi
,
H. G.
,
Kim
,
K. H.
,
Byun
,
S. Y.
,
Kim
,
H. -S.
, and
Yoon
,
H. C.
, 2005, “
Bioelectrocatalytic Signaling From Immunosensors With Back-Filling Immobilization of Glucose Oxidase on Biorecognition Surfaces
,”
Biotechnol. Bioeng.
0006-3592,
89
(
7
), pp.
815
821
.
37.
Retama
,
J. R.
,
Lopez-Ruiz
,
B.
, and
Lopez-Cabarcos
,
E.
, 2003, “
Microstructural Modifications Induced by the Entrapped Glucose Oxidase in Crosslinked Polyacrylamide Microgels Used as Glucose Sensors
,”
Biomaterials
0142-9612,
24
(
17
), pp.
2965
2973
.
38.
Gaikwad
,
P. D.
,
Shirale
,
D. J.
,
Gade
,
V. K.
,
Savale
,
P. A.
,
Kharat
,
H. J.
,
Kakde
,
K. P.
, and
Shirsat
,
M. D.
, 2006, “
Immobilization of GOD on Electrochemically Synthesized PANI Film by Cross-Linking via Glutaraldehyde for Determination of Glucose
,”
International Journal of Electrochemical Science
,
1
(
8
), pp.
425
434
.
You do not currently have access to this content.