Investigations in cellular and molecular engineering have explored the impact of nanotechnology and the potential for monitoring and control of human diseases. In a recent analysis, the dynamic fluid-induced stresses were characterized during microfluidic applications of an instrument with nanometer and picoNewton resolution as developed for single-cell biomechanics (Kohles, S. S., Nève, N., Zimmerman, J. D., and Tretheway, D. C., 2009, “Stress Analysis of Microfluidic Environments Designed for Isolated Biological Cell Investigations,” ASME J. Biomech. Eng., 131(12), p. 121006). The results described the limited stress levels available in laminar, creeping-flow environments, as well as the qualitative cellular strain response to such stress applications. In this study, we present a two-dimensional computational model exploring the physical application of normal and shear stress profiles (with 0.1, 1.0, and 10.0 Pa peak amplitudes) potentially available within uniform and extensional flow states. The corresponding cellular strains and strain patterns were determined within cells modeled with healthy and diseased mechanical properties (5.0–0.1 kPa moduli, respectively). Strain energy density results integrated over the volume of the planar section indicated a strong mechanical sensitivity involving cells with disease-like properties. In addition, ex vivo microfluidic environments creating in vivo stress states would require freestream flow velocities of 2–7 mm/s. Knowledge of the nanomechanical stresses-strains necessary to illicit a biologic response in the cytoskeleton and cellular membrane will ultimately lead to refined mechanotransduction relationships.

1.
Cross
,
S. E.
,
Jin
,
Y. S.
,
Rao
,
J.
, and
Gimzewski
,
J. K.
, 2007, “
Nanomechanical Analysis of Cells From Cancer Patients
,”
Nat. Nanotechnol.
1748-3387,
2
, pp.
780
783
.
2.
Kamm
,
R. D.
, and
Kaazempur-Mofrad
,
M. R.
, 2004, “
On the Molecular Basis for Mechanotransduction
,”
Mech. Chem. Biosyst.
1546-2048,
1
(
3
), pp.
201
209
.
3.
Hunter
,
P.
, and
Nielsen
,
P.
, 2005, “
A Strategy for Integrative Computational Physiology
,”
Physiology (Bethesda, MD)
,
20
, pp.
316
325
.
4.
Kim
,
W.
,
Tretheway
,
D. C.
, and
Kohles
,
S. S.
, 2009, “
An Inverse Method for Predicting Tissue-Level Mechanics From Cellular Mechanical Input
,”
J. Biomech.
0021-9290,
42
(
3
), pp.
395
399
.
5.
Lim
,
C. T.
,
Zhou
,
E. H.
, and
Quek
,
S. T.
, 2006, “
Mechanical Models for Living Cells-A Review
,”
J. Biomech.
0021-9290,
39
(
2
), pp.
195
216
.
6.
Walker
,
L. M.
,
Holm
,
A.
,
Cooling
,
L.
,
Maxwell
,
L.
,
Oberg
,
A.
,
Sundqvist
,
T.
, and
El Haj
,
A. J.
, 1999, “
Mechanical Manipulation of Bone and Cartilage Cells With Optical Tweezers
,”
FEBS Lett.
0014-5793,
459
, pp.
39
42
.
7.
Guck
,
J.
,
Ananthakrishnan
,
R.
,
Mahmood
,
H.
,
Moon
,
T. J.
,
Cunningham
,
C. C.
, and
Kas
,
J.
, 2001, “
The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells
,”
Biophys. J.
0006-3495,
81
, pp.
767
784
.
8.
Bao
,
G.
, and
Suresh
,
S.
, 2003, “
Cell and Molecular Mechanics of Biological Materials
,”
Nature Mater.
1476-1122,
2
(
11
), pp.
715
725
.
9.
Nève
,
N.
,
Lingwood
,
J. K.
,
Zimmerman
,
J.
,
Kohles
,
S. S.
, and
Tretheway
,
D. C.
, 2008, “
The μPIVOT: An Integrated Particle Image Velocimeter and Optical Tweezers Instrument for Microenvironment Investigations
,”
Meas. Sci. Technol.
0957-0233,
19
(
9
), p.
095403
.
10.
Kohles
,
S. S.
,
Nève
,
N.
,
Zimmerman
,
J. D.
, and
Tretheway
,
D. C.
, 2009, “
Stress Analysis of Microfluidic Environments Designed for Isolated Biological Cell Investigations
,”
ASME J. Biomech. Eng.
0148-0731,
131
(
12
), p.
121006
.
11.
Nève
,
N.
,
Kohles
,
S. S.
,
Winn
,
S. R.
, and
Tretheway
,
D. C.
, “Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers,” Cell Mol. Bioeng., in press.
12.
Poole
,
C. A.
,
Flint
,
M. H.
, and
Beaumont
,
B. W.
, 1987, “
Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages
,”
J. Orthop. Res.
0736-0266,
5
(
4
), pp.
509
522
.
13.
Su
,
S. S.
, and
Schmid-Schönbein
,
G. W.
, 2008, “
Fluid Stresses on the Membrane of Migrating Leukocytes
,”
Ann. Biomed. Eng.
0090-6964,
36
(
2
), pp.
298
307
.
14.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
Wiley
,
NY
.
15.
Cook
,
R. D.
, and
Young
,
W. C.
, 1985,
Advanced Mechanics of Materials
,
Macmillan
,
NY
.
16.
Hinojosa
,
C.
,
Zimmerman
,
J.
,
Nève
,
N.
, and
Tretheway
,
D.
, 2009, “
3-D Velocity Measurements Around an Optically Suspended Sphere
,”
62nd Annual Meeting
, APS Division of Fluid Dynamics, Minneapolis, MN, Paper No. MN.00008.
17.
Kohles
,
S. S.
,
Wilson
,
C. G.
, and
Bonassar
,
L. J.
, 2007, “
A Mechanical Composite Spheres Analysis of Engineered Cartilage Dynamics
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
4
), pp.
473
480
.
18.
Preiss-Bloom
,
O.
,
Mizrahi
,
J.
,
Elisseeff
,
J.
, and
Seliktar
,
D.
, 2009, “
Real-Time Monitoring of Force Response Measured in Mechanically Stimulated Tissue-Engineered Cartilage
,”
Artif. Organs
0160-564X,
33
(
4
), pp.
318
327
.
19.
Shieh
,
A. C.
, and
Athanasiou
,
K. A.
, 2002, “
Biomechanics of Single Chondrocytes and Osteoarthritis
,”
Crit. Rev. Biomed. Eng.
0278-940X,
30
(
4–6
), pp.
307
343
.
20.
Ofek
,
G.
,
Natoli
,
R. M.
, and
Athanasiou
,
K. A.
, 2009, “
In Situ Mechanical Properties of the Chondrocyte Cytoplasm and Nucleus
,”
J. Biomech.
0021-9290,
42
(
7
), pp.
873
877
.
21.
Vanderby
,
R.
, Jr.
,
Manley
,
P. A.
,
Belloli
,
D. M.
,
Kohles
,
S. S.
,
Thielke
,
R. J.
, and
McBeath
,
A. A.
, 1990, “
Femoral Strain Adaptation After Total Hip Replacement
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
204
, pp.
97
109
.
22.
Ruimerman
,
R.
,
Van Rietbergen
,
B.
,
Hilbers
,
P.
, and
Huiskes
,
R.
, 2005, “
The Effects of Trabecular-Bone Loading Variables on the Surface Signaling Potential for Bone Remodeling and Adaptation
,”
Ann. Biomed. Eng.
0090-6964,
33
(
1
), pp.
71
78
.
23.
Turner
,
C. H.
,
Warden
,
S. J.
,
Bellido
,
T.
,
Plotkin
,
L. I.
,
Kumar
,
N.
,
Jasiuk
,
I.
,
Danzig
,
J.
, and
Robling
,
A. G.
, 2009, “
Mechanobiology of the Skeleton
,”
Sci. Signal.
,
2
(
68
), pt. 3.
24.
Cooksey
,
G. A.
,
Plant
,
A. L.
, and
Atencia
,
J.
, 2009, “
A Vacuum Manifold for Rapid World-to-Chip Connectivity of Complex PDMS Microdevices
,”
Lab Chip
1473-0197,
9
(
9
), pp.
1298
1300
.
25.
Wilson
,
Z. D.
, and
Kohles
,
S. S.
, “Volumetric Stress Analysis of Hydrodynamically Suspended Biological Cells,” ASME J. Biomech. Eng., in press.
You do not currently have access to this content.