Distraction osteogenesis is a technique of bone lengthening that makes use of the body’s natural healing capacity. An osteotomy is created, and a rigid distraction device is attached to the bone. After a latency period, the device is activated two to four times per day for a total of 1 mm/day of bone lengthening. This technique is used to correct a variety of congenital and acquired deformities of the mandible, midface, and long bones. To shorten the treatment period and to eliminate the complications of patient activation of the device, an automated continuous distraction device would be desirable. It has been reported that continuous distraction generates adequate bone with lengthening at a rate of 2 mm/day, thereby reducing the treatment time. The device we describe here uses miniature high-pressure hydraulics, position feedback, and a digital controller to achieve closed-loop control of the distraction process. The implanted actuator can produce up to 40 N of distraction force on linear trajectories as well as curved distraction paths. In this paper we detail the spring-powered hydraulic reservoir, controller, and user interface. Experiments to test the new device design were performed in a porcine cadaver head and in live pigs. In the cadaver head, the device performed an 11 day/11 mm distraction with a root-mean-squared position error of 0.09 mm. The device functioned for periods of several days in each of five live animals, though some component failures occurred, leading to design revisions. The test series showed that the novel design of this system provides the capabilities necessary to automate distraction of the mandible. Further developments will focus on making the implanted position sensor more robust and then on carrying out clinical trials.

1.
Codivilla
,
A.
, 1905, “
On the Means of Lengthening, in the Lower Limbs, the Muscles and Tissues Which Are Shortened Through Deformity
,”
Am. J. Orthop. Surg.
,
2
, pp.
353
369
. 1049-1961
2.
Ilizarov
,
G. A.
, 1989, “
The Tension-Stress Effect on the Genesis and Growth of Tissues: Part II. The Influence of Rate and Frequency of Distraction
,”
Clin. Orthop. Relat. Res.
,
239
, pp.
263
285
. 0009-921X
3.
Ilizarov
,
G. A.
, 1989, “
The Tension-Stress Effect on the Genesis and Growth of Tissues: Part I. The Influence of Stability of Fixation and Soft-Tissue Preservation
,”
Clin. Orthop. Relat. Res.
0009-921X,
238
, pp.
249
281
.
4.
McCarthy
,
J. G.
,
Schreiber
,
J.
,
Karp
,
N.
,
Thorne
,
C. H.
, and
Grayson
,
B. H.
, 1992, “
Lengthening of the Human Mandible by Gradual Distraction
,”
Plast. Reconstr. Surg.
,
89
, pp.
1
8
. 0032-1052
5.
Perrott
,
D. H.
,
Berger
,
R.
,
Vargervik
,
K.
, and
Kaban
,
L. B.
, 1993, “
Use of Skeletal Distraction Device to Widen the Mandible: A Case Report
,”
J. Oral Maxillofac Surg.
,
51
(
4
), pp.
435
439
. 0278-2391
6.
2004,
Pediatric Oral and Maxillofacial Surgery
,
L. B.
Kaban
and
M. J.
Troulis
, eds.,
Saunders
,
Philadelphia
.
7.
Maull
,
D. J.
, 1999, “
Review of Devices for Distraction Osteogenesis of the Craniofacial Complex
,”
Semin. Orthod.
,
5
(
1
), pp.
64
73
. 1073-8746
8.
Troulis
,
M. J.
, and
Kaban
,
L. B.
, 2003, “
Complications of Mandibular Distraction Osteogenesis
,”
Atlas Oral Maxillofac Surg. Clin. North Am.
,
15
, pp.
251
264
. 1042-3699
9.
Kessler
,
P.
,
Neukam
,
F. W.
, and
Wiltfang
,
J.
, 2005, “
Effects of Distraction Forces and Frequency of Distraction on Bony Regeneration
,”
Br. J. Oral Maxillofac Surg.
,
43
, pp.
392
398
. 0266-4356
10.
Keßler
,
P.
,
Wiltfang
,
J.
, and
Neukam
,
F. W.
, 2000, “
A New Distraction Device to Compare Continuous and Discontinuous Bone Distraction in Mini-Pigs: A Preliminary Report
,”
J. Craniomaxillofac Surg.
,
28
, pp.
5
11
. 1010-5182
11.
Wiltfang
,
J.
,
Kessler
,
P.
,
Merten
,
H. -A.
, and
Neukam
,
F. W.
, 2001, “
Continuous and Intermittent Bone Distraction Using a Microhydraulic Cylinder: An Experimental Study in Minipigs
,”
Br. J. Oral Maxillofac Surg.
,
39
, pp.
2
7
. 0266-4356
12.
Troulis
,
M. J.
,
Glowacki
,
J.
,
Perrott
,
D. H.
, and
Kaban
,
L. B.
, 2000, “
The Effects of Latency and Rate on Distraction Osteogenesis of the Porcine Mandible
,”
J. Oral Maxillofac Surg.
,
58
, pp.
507
513
. 0278-2391
13.
Tavakoli
,
K.
,
Walsh
,
W. R.
,
Bonar
,
F.
,
Smart
,
R.
,
Wulf
,
S.
, and
Poole
,
M. D.
, 1998, “
The Role of Latency in Mandibular Osteodistraction
,”
J. Craniomaxillofac Surg.
,
26
, pp.
209
219
. 1010-5182
14.
Ritter
,
L.
,
Yeshwant
,
K.
,
Seldin
,
E. B.
,
Kaban
,
L. B.
,
Gateno
,
J.
,
Keeve
,
E.
,
Kikinis
,
R.
, and
Troulis
,
M. J.
, 2006, “
Range of Curvilinear Distraction Devices Required for Treatment of Mandibular Deformities
,”
J. Oral Maxillofac Surg.
,
64
(
2
), pp.
259
264
. 0278-2391
15.
Schmelzeisen
,
R.
,
Neumann
,
G.
, and
von der Fecht
,
R.
, 1996, “
Distraction Osteogenesis in the Mandible With a Motor-Driven Plate: A Preliminary Animal Study
,”
Br. J. Oral Maxillofac Surg.
,
34
, pp.
375
378
. 0266-4356
16.
Ploder
,
O.
,
Mayr
,
W.
,
Schnetz
,
G.
,
Unger
,
E.
,
Ewers
,
R.
, and
Plenk
,
H.
, 1999, “
Mandibular Lengthening With an Implanted Motor-Driven Device: Preliminary Study in Sheep
,”
Br. J. Oral Maxillofac Surg.
,
37
, pp.
273
276
. 0266-4356
17.
Ayoub
,
A. F.
, and
Richardson
,
W.
, 2001, “
A New Device for Microincremental Automatic Distraction Osteogenesis
,”
Br. J. Oral Maxillofac Surg.
,
39
,
353
355
. 0266-4356
18.
Ayoub
,
A. F.
,
Richardson
,
W.
,
Koppel
,
D.
,
Thompson
,
H.
,
Lucas
,
M.
,
Schwarz
,
T.
,
Smith
,
L.
, and
Boyd
,
J.
, 2001, “
Segmental Mandibular Reconstruction by Microincremental Automatic Distraction Osteogenesis: An Animal Study
,”
Br. J. Oral Maxillofac Surg.
,
39
, pp.
356
364
. 0266-4356
19.
Ayoub
,
A. F.
,
Richardson
,
W.
, and
Barbenel
,
J. C.
, 2005, “
Mandibular Elongation by Automatic Distraction Osteogenesis: The First Application in Humans
,”
Br. J. Oral Maxillofac Surg.
,
43
(
4
), pp.
324
328
. 0266-4356
You do not currently have access to this content.