This paper presents the development of an underactuated compliant gripper using a biocompatible superelastic alloy, namely, nitinol. This gripper has two fingers with five phalanges each and can be used as the end-effector of an endoscopic instrument. Optimization procedures are required to obtain the geometry of the transmission mechanism because of its underactuated nature and its underlying complexity. A driving mechanism further incorporated in the gripper to distribute actuation to both fingers and accomplish the grasping of asymmetrical objects without requiring supplementary inputs is also discussed. Finally, the results of numerical simulations with different materials and different grasped objects are presented and discussed.

1.
Kota
,
S.
,
Lu
,
K. -J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
, 2005, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
6
), pp.
981
989
.
2.
Boudreault
,
E.
, 2006, “
Conception de Préhenseurs Sous-Actionnés avec Articulations Déformables
,” MS thesis, Université Laval, QC, Canada.
3.
Boudreault
,
E.
, and
Gosselin
,
C.
, 2006, “
Design of Sub-Centimetre Underactuated Compliant Grippers
,”
Proceedings of the 2006 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA, Paper No. DETC2006–99415.
4.
Dollar
,
A.
, and
Howe
,
R. D.
, 2006, “
Joint Coupling Design of Underactuated Grippers
,”
Proceedings of the 2006 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Philadelphia, PA, Paper No. DETC2006–99645.
5.
Birglen
,
L.
,
Laliberté
,
T.
, and
Gosselin
,
C.
, 2008,
Underactuated Robotic Hands
,
Springer
,
New York
.
6.
Hirose
,
S.
, and
Umetani
,
Y.
, 1978, “
The Development of Soft Gripper for the Versatile Robotic Hand
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
351
358
.
7.
Laliberté
,
T.
, and
Gosselin
,
C.
, 2001, “
Underactuation in Space Robotic Hands
,”
International Symposium on Artificial Intelligence, Robotics and Automation in Space
, Montréal, Canada.
8.
Eiselstein
,
L.
, 2005, “
Review of Fatigue and Fracture Behavior in NiTi
,”
Medical Device Materials III-Proceedings of the Materials and Processes for Medical Devices Conference
, Boston, MA, pp.
135
147
.
9.
Gosselin
,
C.
, and
Laliberté
,
T.
, 1996, “
Underactuated Mechanical Finger With Return Actuation
,” U.S. Patent No. 5 762 390.
10.
Birglen
,
L.
, and
Gosselin
,
C.
, 2004, “
Kinetostatic Analysis of Underactuated Fingers
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
2
), pp.
211
221
.
11.
Birglen
,
L.
, 2006, “
An Introduction to the Analysis of Linkage-Driven Compliant Underactuated Fingers
,”
2006 ASME International Design Engineering Technical Conferences
, Philadelphia, PA, Paper No. DETC2006–99048.
13.
De Bona
,
F.
, and
Munteanu
,
M. Gh
, 2005, “
Optimized Flexural Hinges for Compliant Micromechanisms
,”
Analog Integr. Circuits Signal Process.
0925-1030,
44
, pp.
163
194
.
14.
Lobontiu
,
N.
, 2002,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC
,
Boca Raton, FL
.
15.
Montgomery
,
D. C.
, 2005,
Design and Analysis of Experiments
,
Wiley
,
New York
.
16.
Wilkes
,
K.
, and
Liaw
,
P.
, 2000, “The fatigue behavior of shape-memory alloys,” Journal of the Minerals, Metals and Materials Society, 52(
10
), pp.
45
51
. 0022-2461
17.
Lin
,
H.
,
Lin
,
K.
, and
Cheng
,
I.
, 2001, “
The Electro-Discharge Machining Characteristics of TiNi Shape Memory Alloys
,”
J. Mater. Sci.
0022-2461,
36
, pp.
399
404
.
18.
Wu
,
M. H.
, 2001, “
Fabrication of Nitinol Materials and Components
,”
Proceedings of the 2001 International Conference on Shape Memory and Superelastic Technologies
, pp.
285
292
.
19.
Shabalovskaya
,
S.
,
Anderegg
,
J.
,
Laab
,
F.
,
Thiel
,
P.
, and
Rondelli
,
G.
, 2003, “
Surface Conditions of Nitinol Wires, Tubing, and As-Cast Alloys. The Effect of Chemical Etching, Aging in Boiling Water, and Heat Treatment
,”
J. Biomed. Mater. Res., Part B: Appl. Biomater.
,
65B
(
1
), pp.
193
203
. 1552-4973
20.
Birglen
,
L.
, and
Gosselin
,
C.
, 2004, “
Optimal Design of 2-Phalanx Underactuated Fingers
,”
Proceedings of the 2004 International Conference on Intelligent Manipulation and Grasping
, Genova, Italy, pp.
110
116
.
21.
de Visser
,
H.
, and
Herder
,
J. L.
, 2000, “
Force Directed Design of a Voluntary Closing Hand Prosthesis
,”
J. Rehabil. Res. Dev.
0748-7711,
37
(
3
), pp.
261
271
.
22.
DeJong
,
K.
, and
Spears
,
W.
, 1990, “
An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms
,”
Proceedings of the First Workshop in Parallel Problem Solving From Nature
,
Springer-Verlag
,
Berlin
, pp.
38
47
.
23.
Birglen
,
L.
, and
Gosselin
,
C.
, 2003, “
On the Force Capabilities of Underactuated Fingers
,”
Proceedings of the 2003 IEEE International Conference on Robotics and Automation
, Taipei, Taiwan, pp.
1139
1145
.
24.
Birglen
,
L.
, and
Gosselin
,
C.
, 2006, “
Optimally Unstable Underactuated Gripper: Synthesis and Applications
,”
2006 ASME International Design Engineering Technical Conferences
, Philadelphia, PA, Paper No. DETC2006–99047.
25.
Rudolph
,
G.
, 1994, “
Convergence Analysis of Canonical Genetic Algorithms
,”
IEEE Trans. Neural Netw.
1045-9227,
5
(
1
), pp.
96
101
.
26.
Dean
,
A. M.
, and
Voss
,
D.
, 1999,
Design and Analysis of Experiments
,
Springer
,
New York
.
27.
Birglen
,
L.
, and
Gosselin
,
C.
, 2006, “
Force Analysis of Connected Differential Mechanisms: Applications to Grasping
,”
Int. J. Robot. Res.
,
25
(
10
), pp.
1033
1046
. 0278-3649
28.
Laliberté
,
T.
, and
Gosselin
,
C.
, 1998, “
Simulation and Design of Underactuated Mechanical Hands
,”
Mech. Mach. Theory
0094-114X,
33
(
1–2
), pp.
39
57
.
29.
MatWeb
, 2008, “
MatWeb: Material Property Data
,” URL: http://www.matweb.com/http://www.matweb.com/.
You do not currently have access to this content.