Implantation methods for commercially available heart valve prostheses require open-chest access to the heart to perform the suturing process. In order to alleviate this complicated surgical implant technique, a “stent-valve” design was developed that will provide a less cumbersome implantation method and therefore a less invasive access to the heart. The purpose of this study is to verify its hydrodynamic performance and migration characteristics to assess its feasibility for use as a replacement heart valve. Hydrodynamic evaluation of the novel stent-valve combination device was carried out using a Vivitro left heart simulator and by setting up a comparison with the same 19 mm trileaflet valve under a traditional implantation (suture) method. To assess implantation ability under normal physiological conditions, porcine aortic root tissue was mounted into the left heart simulator to replace the original glass sinus. A comparison experiment was conducted to study the change in the total compliance and resistance of the testing system using the modified Windkessel model. For the range of test conditions investigated, the stent-valve combination device produced an average pressure gradient of 41.2mmHg(±19.6mmHg), an average effective orifice area (EOA) of 1.06cm2(±0.08cm2), and an average regurgitation percentage of 4.5% (±3.3%), while the sutured valve produced an average pressure gradient of 48.7mmHg(±17.4mmHg), an average EOA of 0.88cm2(±0.14cm2), and an average regurgitation percentage of 0.8% (±0.4%). The total compliance and resistance of the system was 0.37ml/mmHg(±0.01ml/mmHg) and 1.1mmHg/ml/s(±0.29mmHg/ml/s), with the original Windkessel model, and 0.33ml/mmHg(±0.01ml/mmHg) and 1.1mmHg/ml/s(±0.24mmHg/ml/s) for the system with the aortic tissue. The stent-valve combination device has demonstrated favorable hydrodynamic performance when compared with the same trileaflet valve under the traditional suturing method, and the arterial stent makes it possible to secure the valve at its required position without migration.

1.
Woodman
,
R. C.
, and
Harker
,
L. A.
, 1990, “
Bleeding Complications Associated With Cardiopulmonary Bypass
,”
Blood
,
76
(
9
), pp.
1680
1697
. 0006-4971
2.
Singer
,
R. L.
,
Mannion
,
J. D.
,
Bauer
,
T. L.
,
Armenti
,
F. R.
, and
Edie
,
R. N.
, 1993, “
Complications From Heparin-Induced Thrombocytopenia in Patients Undergoing Cardiopulmonary Bypass
,”
Chest
,
104
(
5
), pp.
1436
1440
. 0012-3692
3.
Butler
,
J.
,
Rocker
,
G. M.
, and
Westaby
,
S.
, 1993, “
Inflammatory Response to Cardiopulmonary Bypass
,”
Ann. Thorac. Surg.
,
55
(
2
), pp.
552
559
. 0003-4975
4.
Edmunds
,
L. N.
, and
Cohn
,
L. H.
, 2003,
Cardiac Surgery in the Adult
,
McGraw-Hill
,
New York
.
5.
Mihaljevic
,
T.
,
Cohn
,
L. H.
,
Unic
,
D.
,
Aranki
,
S. F.
,
Couper
,
G. S.
, and
Byrne
,
J. G.
, 2004, “
One Thousand Minimally Invasive Valve Operations: Early and Late Results
,”
Ann. Surg.
,
240
(
3
), pp.
529
534
. 0003-4932
6.
Schoephoerster
,
R.
,
Gallocher
,
S.
,
Pinchuk
,
L.
, and
Kasyanov
,
V.
, 2001,“
A Novel Trileaflet Synthetic Heart Valve
,”
IMECE
, New York, Paper No. IMECE/BED-23112, pp.
1
2
.
7.
Gallocher
,
S.
, 2004, “
A Novel Polymer Heart Valve: Quantification of Hydrodynamic Function and Platelet Deposition
,” Ph.D. thesis, Florida International University, Miami, FL.
8.
Gallocher
,
S. L.
, 2007, “
Durability Assessment of Polymer Trileaflet Heart Valves
,” Ph.D. thesis, Florida International University, Miami, FL.
9.
Fung
,
Y. C.
, 1996,
Biomechanics: Circulation
,
Springer
,
New York
.
10.
Quick
,
C. M.
,
Berger
,
D. S.
, and
Noordergraaf
,
A.
, 1998, “
Apparent Arterial Compliance
,”
Am. J. Physiol.
,
274
(
4
), pp.
H1393
H1403
. 0002-9513
11.
Keener
,
J.
, and
Sneyd
,
J.
, 1998,
Mathematical Physiology
,
Springer
,
New York
.
12.
Von Segesser
,
L. K.
,
Westaby
,
S.
,
Pomar
,
J.
,
Loisance
,
D.
,
Groscurth
,
P.
, and
Turina
,
M.
, 1999, “
Less Invasive Aortic Valve Surgery: Rationale and Technique
,”
Eur. J. Cardiothorac Surg.
,
15
(
6
), pp.
781
785
. 1010-7940
13.
Liu
,
J.
,
Sidiropoulos
,
A.
, and
Konertz
,
W.
, 1999, “
Minimally Invasive Aortic Valve Replacement (AVR) Compared to Standard AVR
,”
Eur. J. Cardiothorac Surg.
,
16
(
2
), pp.
S80
S83
. 1010-7940
14.
Cosgrove
,
D. M.
, III
,
Sabik
,
J. F.
, and
Navia
,
J. L.
, 1998, “
Minimally Invasive Valve Operations
,”
Ann. Thorac. Surg.
,
65
(
6
), pp.
1535
1538
. 0003-4975
15.
Machler
,
H. E.
,
Bergmann
,
P.
,
Anelli-Monti
,
M.
,
Dacar
,
D.
,
Rehak
,
P.
,
Knez
,
I.
,
Salaymeh
,
L.
,
Mahla
,
E.
, and
Rigler
,
B.
, 1999, “
Minimally Invasive Versus Conventional Aortic Valve Operations: A Prospective Study in 120 Patients
,”
Ann. Thorac. Surg.
,
67
(
4
), pp.
1001
1005
. 0003-4975
16.
Bakir
,
I.
,
Casselman
,
F. P.
,
Wellens
,
F.
,
Jeanmart
,
H.
,
De Geest
,
R.
,
Degrieck
,
I.
,
Van Praet
,
F.
,
Vermeulen
,
Y.
, and
Vanermen
,
H.
, 2006, “
Minimally Invasive Versus Standard Approach Aortic Valve Replacement: A Study in 506 Patients
,”
Ann. Thorac. Surg.
,
81
(
5
), pp.
1599
1604
. 0003-4975
17.
Bonacchi
,
M.
,
Prifti
,
E.
,
Giunti
,
G.
,
Frati
,
G.
, and
Sani
,
G.
, 2002, “
Does Ministernotomy Improve Postoperative Outcome in Aortic Valve Operation? A Prospective Randomized Study
,”
Ann. Thorac. Surg.
,
73
(
2
), pp.
460
465
. 0003-4975
18.
Lutter
,
G.
,
Ardehali
,
R.
,
Cremer
,
J.
, and
Bonhoeffer
,
P.
, 2004, “
Percutaneous Valve Replacement: Current State and Future Prospects
,”
Ann. Thorac. Surg.
,
78
(
6
), pp.
2199
2206
. 0003-4975
19.
Lutter
,
G.
,
Kuklinski
,
D.
,
Berg
,
G.
,
Von Samson
,
P.
,
Martin
,
J.
,
Handke
,
M.
,
Uhrmeister
,
P.
, and
Beyersdorf
,
F.
, 2002, “
Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation
,”
J. Thorac. Cardiovasc. Surg.
,
123
(
4
), pp.
768
776
. 0022-5223
20.
Fish
,
R. D.
, 2004, “
Percutaneous Heart Valve Replacement: Enthusiasm Tempered
,”
Circulation
,
110
(
14
), pp.
1876
1878
. 0009-7322
21.
Boudjemline
,
Y.
, and
Bonhoeffer
,
P.
, 2002, “
Steps Toward Percutaneous Aortic Valve Replacement
,”
Circulation
0009-7322,
105
(
6
), pp.
775
778
.
22.
Grigg
,
L.
,
Fulop
,
J.
,
Daniel
,
L.
,
Weisel
,
R.
, and
Rakowski
,
H.
, 1990, “
Doppler Echocardiography Assessment of Prosthetic Heart Valves
,”
Echocardiogr.
,
7
(
2
), pp.
97
114
. 0742-2822
23.
Jennings
,
L. M.
,
El-Gatit
,
A.
,
Nagy
,
Z. L.
,
Fisher
,
J.
,
Walker
,
P. G.
, and
Watterson
,
K. G.
, 2002, “
Hydrodynamic Function of the Second-Generation Mitroflow Pericardial Bioprosthesis
,”
Ann. Thorac. Surg.
,
74
(
1
), pp.
63
68
. 0003-4975
24.
Fisher
,
J.
,
Jack
,
G. R.
, and
Wheatley
,
D. J.
, 1986, “
Design of a Function Test Apparatus for Prosthetic Heart Valves. Initial Results in the Mitral Position
,”
Clin. Phys. Physiol. Meas.
,
7
(
1
), pp.
63
73
. 0143-0815
You do not currently have access to this content.