Abstract

Conventional artificial anal sphincter (AAS) did not have the capability to detect intestinal pressure, which may lead to ischemic necrosis at the clamping site or incomplete fecal release. The biaxial actuated artificial anal sphincter (BAAS) was capable of emulating the functions of the internal and external anal sphincters as well as the puborectalis in regulating defecation. Additionally, it provided real-time feedback on intestinal pressure information and aided in restoring the patient's sensation of defecation. The performance of the actuator was pivotal to the defecation control process within the BAAS, directly influencing its efficacy. Based on the human defecation mechanisms, the BAAS actuator designed in this study comprised primarily mechanical device, control system, and sensor module (SM). The mechanical device was responsible for executing the defecation operation. The control system facilitated information collection, transmission, processing, and storage. It controlled the actions of the mechanical device and established communication with an external controller. The sensor module quantified intestinal pressure and aided patients in regaining a sense of normal defecation. Finally, through tests evaluated sealing performance, mechanical performance, and clamping capability of the BAAS actuator, it was confirmed that the BAAS achieved an IPx8 waterproof rating. When a stall current of 0.615 A, the BAAS actuator generated an output force of 11.65 N, satisfying the clamping requirements of the BAAS system. The BAAS actuator had a maximum control volume of approximately 450 mL and an anorectal angle less than 90 deg, which met the requirements of in vivo experiment. This study provided guidance for a new generation of AAS.

References

1.
Marziale
,
L.
,
Lucarini
,
G.
,
Mazzocchi
,
T.
,
Ricotti
,
L.
, and
Menciassi
,
A.
,
2020
, “
Comparative Analysis of Occlusion Methods for Artificial Sphincters
,”
Artif. Organs
,
44
(
9
), pp.
995
1005
.10.1111/aor.13684
2.
Leo
,
C. A.
,
Thomas
,
G. P.
,
Bradshaw
,
E.
,
Karki
,
S.
,
Hodgkinson
,
J. D.
,
Murphy
,
J.
, and
Vaizey
,
C. J.
,
2020
, “
Long-Term Outcome of Sacral Nerve Stimulation for Faecal Incontinence
,”
Colorectal Dis.
,
22
(
12
), pp.
2191
2198
.10.1111/codi.15369
3.
Deb
,
B.
,
Prichard
,
D. O.
, and
Bharucha
,
A. E.
,
2020
, “
Constipation and Fecal Incontinence in the Elderly
,”
Curr. Gastroenterol. Rep.
,
22
(
11
), p. 54.10.1007/s11894-020-00791-1
4.
Chung
,
Y. N.
,
Kelvin
,
K. F. K.
,
Moe
,
H.
,
Abdul
,
R.
,
Francisco
,
T. T.
, and
Joseph
,
J. Y.
,
2019
, “
A Population-Based Age-Period-Cohort Study of Colorectal Cancer Incidence Comparing Asia Against the West
,”
Cancer Epidemiol.
,
59
, pp.
29
36
.10.1016/j.canep.2019.01.007
5.
Musa
,
M. K.
,
Saga
,
S.
,
Blekken
,
L. L.
,
Harris
,
R.
,
Goodman
,
C.
, and
Norton
,
C.
,
2019
, “
The Prevalence, Incidence, and Correlates of Fecal Incontinence Among Older People Residing in Care Homes: A Systematic Review
,”
J. Am. Med. Directors Assoc.
,
20
(
8
), pp.
956
962.e8
.10.1016/j.jamda.2019.03.033
6.
Elashri
,
N. I. E. A.
, and
Elfadawy
,
H. A. M.
,
2020
, “
Fecal Incontinence Frequency, Severity and Its Impact on Quality of Life of Elderly Patients
,”
J. Nurs. Health Sci.
,
9
(
3
), pp.
51
61
.10.9790/1959-0903065161
7.
Sharma
,
A.
, and
Rao
,
S. S. C.
,
2020
, “
Epidemiologic Trends and Diagnostic Evaluation of Fecal Incontinence
,”
Gastroenterol. Hepatol.
,
16
(
6
), pp.
302
309
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8132710/
8.
Meng
,
L. F.
,
Liu
,
X. D.
,
Wan
,
M.
,
Zhang
,
W.
,
Hou
,
H. M.
,
Zhao
,
S. Y.
,
Zhou
,
Y. H.
, et al.,
2020
, “
Application of Urethral Pressure Profilometry in Artificial Urinary Sphincter Implantation
,”
Zhong hua yi xue za zhi
,
100
(
26
), pp.
2044
2048
.10.3760/cma.j.cn112137-20191212-02714
9.
Denormandie
,
A.
,
Chartier
,
K. E.
,
Haddad
,
R.
,
Robain
,
G.
,
Guillot
,
T. C.
, and
Phé
,
V.
,
2021
, “
Long-Term Functional Outcomes of Artificial Urinary Sphincter (AMS 800™) Implantation in Women Aged Over 75 Years and Suffering From Stress Urinary Incontinence Caused by Intrinsic Sphincter Deficiency
,”
World J. Urol.
,
39
(
10
), pp.
3897
3902
.10.1007/s00345-021-03702-9
10.
Chartier
,
K. E.
,
Vaessen
,
C.
,
Rouprêt
,
M.
,
Bassi
,
S.
,
Cancrini
,
F.
, and
Phé
,
V.
,
2020
, “
Robot-Assisted Laparoscopic Artificial Urinary Sphincter Insertion in Women With Stress Urinary Incontinence: A Pilot Single-Centre Study
,”
BJU Int.
,
126
(
6
), pp.
722
730
.10.1111/bju.15147
11.
Gondran
,
T. B.
,
Boissier
,
R.
,
Baboudjian
,
M.
,
Rouy
,
M.
,
Gaillet
,
S.
,
Lechevallier
,
E.
,
Michel
,
F.
, and
Karsenty
,
G.
,
2019
, “
Robot-Assisted Implantation of an Artificial Urinary Sphincter, the AMS800, Via a Posterior Approach to the Bladder Neck in Women With Intrinsic Sphincter Deficiency
,”
BJU Int.
,
124
(
6
), pp.
1077
1080
.10.1111/bju.14884
12.
Van
,
D. W. A. A.
,
Breukink
,
S. O.
,
Sturkenboom
,
R.
,
Stassen
,
L. P.
,
Baeten
,
C. G.
, and
Melenhorst
,
J.
,
2020
, “
The Artificial Bowel Sphincter in the Treatment of Fecal Incontinence, Long-Term Complications
,”
Dis. Colon Rectum
,
63
(
8
), pp.
1134
1141
.10.1097/DCR.0000000000001683
13.
Romaniszyn
,
M.
, and
Wałęga
,
P.
,
2016
, “
Graciloplasty, Electrostimulation, Electromyography. Clinical Implications of Electrophysiological Phenomena in the Neo-Sphincter Created From the Gracilis Muscle
,”
Pol. Przegl. Chir.
,
88
(
2
), pp.
68
76
.10.1515/pjs-2016-0030
14.
Goos
,
M.
,
Baumgartner
,
U.
,
Löhnert
,
M.
,
Thomusch
,
O.
, and
Ruf
,
G.
,
2013
, “
Experience With a New Prosthetic Anal Sphincter in Three Coloproctological Centres
,”
BMC Surg.
,
13
(
1
), p.
45
.10.1186/1471-2482-13-45
15.
Liapis
,
S. C.
,
Perivoliotis
,
K.
,
Moula
,
A. I.
,
Christodoulou
,
P.
,
Psarianos
,
K.
,
Stavrou
,
A.
,
Baloyiannis
,
I.
, and
Lytras
,
D.
,
2024
, “
Is Magnetic Anal Sphincter Augmentation Still an Option in Fecal Incontinence Treatment: A Systematic Review and Meta-Analysis
,”
Langenbeck's Arch. Surg.
,
409
(
1
), p.
98
.10.1007/s00423-024-03288-x
16.
Gagner
,
M.
,
2021
, “Magnetic Anal Sphincter for Fecal Incontinence,”
Magnetic Surgery
,
Springer International Publishing
,
Cham, Switzerland
.
17.
Lee
,
M. G.
, and
Hyung
,
J. K.
,
2023
, “
Development of 3D Printed Snap-Fit Connection for a Magnetic Anal Sphincter
,”
J. Innovative Med. Technol.
,
1
(
1
), pp.
38
43
.10.61940/jimt.230006
18.
Wang
,
M. H.
,
Liu
,
Y. L.
,
Nong
,
Q. J.
, and
Yu
,
H. L.
,
2022
, “
Experimental Assessment of a Novel Artificial Anal Sphincter With Shape Memory Alloy
,”
Artif. Organs
,
46
(
6
), pp.
1097
1106
.10.1111/aor.14177
19.
Wang
,
M. H.
, and
Yu
,
H. L.
,
2020
, “
Assessment of a Novel Artificial Anal Sphincter With Constant Force
,”
Int. J. Appl. Electromagn. Mech.
,
64
(
1–4
), pp.
1183
1190
.10.3233/JAE-209435
20.
Wang
,
M.
, and
Yu
,
H.
,
2020
, “
The Study for Constant Force Characteristic of C-Shaped Superelastic SMA
,”
Int. J. Appl. Electromagn. Mech.
,
64
(
1–4
), pp.
1253
1259
.10.3233/JAE-209443
21.
Bhamidipaty
,
M.
,
Riss
,
S.
, and
Ong
,
E. J.
,
2023
, “
Sphinkeeper Prosthesis for Fecal Incontinence
,”
Dis. Colon Rectum
,
66
(
10
), pp.
e1048
e1049
.10.1097/DCR.0000000000002564
22.
Dawoud
,
C.
,
Capek
,
B.
,
Bender
,
L.
,
Widmann
,
K. M.
, and
Riss
,
S.
,
2021
, “
Do Sphinkeeper™ Procedure for Treating Recurrent Faecal Incontinence—A Video Vignette
,”
Colorectal Dis.
,
23
(
4
), p.
1020
.10.1111/codi.15522
23.
La
,
T. M.
,
Lisi
,
G.
,
Milito
,
G.
,
Campanelli
,
M.
, and
Clementi
,
I.
,
2020
, “
Sphinkeeper™ for Faecal Incontinence: A Preliminary Report
,”
Colorectal Dis.
,
22
(
1
), pp.
80
85
.10.1111/codi.14801
24.
Dawoud
,
C.
,
Widmann
,
K. M.
,
Pereyra
,
D.
,
Harpain
,
F.
, and
Riss
,
S.
,
2023
, “
Long-Term Outcome After SphinKeeper® Surgery for Treating Fecal Incontinence—Who Are Good Candidates
,”
Langenbeck's Arch. Surg.
,
408
(
1
), p.
456
.10.1007/s00423-023-03188-6
25.
Colbran
,
R.
,
Christopher
,
G.
, and
Andrea
,
W.
,
2022
, “
A Prospective Trial of the THD SphinKeeper® for Faecal Incontinence
,”
Colorectal Dis.
,
24
(
4
), pp.
491
496
.10.1111/codi.16037
26.
Ruthmann
,
O.
,
Richter
,
S.
,
Seifert
,
G.
,
Karcz
,
W.
,
Goldschmidboing
,
F.
,
Lemke
,
T.
,
Biancuzzi
,
G.
, et al.,
2010
, “
The First Teleautomatic Low-Voltage Prosthesis With Multiple Therapeutic Applications: A New Version of the German Artificial Sphincter System
,”
Artif. Organs
,
34
(
8
), pp.
635
641
.10.1111/j.1525-1594.2010.01004.x
27.
Biancuzzi
,
G.
,
Lemke
,
T.
,
Woias
,
P.
,
Ruthmann
,
O.
,
Schrag
,
H. J.
,
Vodermayer
,
B.
,
Schmid
,
T.
, and
Goldschmidtboeing
,
F.
,
2010
, “
Design and Simulation of Advanced Charge Recovery Piezoactuator Drivers
,”
J. Micromech. Microeng.
,
20
(
10
), pp.
105022
105222
.10.1088/0960-1317/20/10/105022
28.
Xiao
,
D. X.
,
Yan
,
G. Z.
,
Hua
,
F. F.
,
Yao
,
S. J.
, and
Ding
,
Z. F.
,
2021
, “
AAS Design Based on Intestinal Simulation and Reconstruction of Defecation Perception
,”
Chin. J. Sci. Instrum.
,
42
(
2
), pp.
133
143
.
29.
Chai
,
C. Y.
,
Yan
,
G. Z.
,
Han
,
D.
,
Zhao
,
K.
, and
Hua
,
F. F.
,
2021
, “
Design and Optimization of an Artificial Anal Sphincter Clamping Mechanism
,”
Opt. Precis. Eng.
,
29
(
11
), pp.
2640
2648
.10.37188/OPE.20212911.2640
30.
Zhou
,
Z.
,
Yan
,
G.
,
Wang
,
Z.
,
Jiang
,
P.
,
Hua
,
F.
,
Yao
,
S.
, and
Ding
,
Z.
,
2020
, “
Design and Evaluation of Puborectalis-Like Artificial Anal Sphincter That Replicates Rectal Perception
,”
Artif. Organs
,
44
(
7
), pp. E300–E312.10.1111/aor.13645
31.
Zhou
,
Z.
,
Yan
,
G.
,
Wang
,
Z.
,
Jiang
,
P.
,
Yao
,
S.
,
Ding
,
Z.
, and
Hua
,
F.
,
2020
, “
Inhibition of Hyperplasia During the Implantation of the Puborectalis-Like Artificial Anal Sphincter
,”
Int. J. Artif. Organs
,
43
(
7
), pp.
482
493
.10.1177/0391398819900187
32.
Han
,
D.
,
Yan
,
G. Z.
,
Hua
,
F. F.
, and
Wang
,
L. C.
,
2022
, “
Preliminary Study of a Novel Artificial Anal Sphincter With Perception Reconstruction
,”
Artif. Organs
,
46
(
5
), pp.
794
803
.10.1111/aor.14129
33.
Han
,
D.
,
Yan
,
G. Z.
,
Kuang
,
S.
,
Wang
,
W.
,
Hua
,
F. F.
, and
Wang
,
L. C.
,
2021
, “
Optimization of Hardware and Software Design for New Artificial Anal Sphincter Low Power System
,”
J. Phys.: Conf. Ser.
,
1948
(
1
), p.
012168
.10.1088/1742-6596/1948/1/012168
34.
Wang
,
L. C.
,
Yan
,
G. Z.
,
Han
,
D.
,
Liu
,
D. S.
,
Hua
,
F. F.
, and
Wu
,
T.
,
2022
, “
Design, Improvement and Evaluation of a Novel In Situ Implanted Bionic Artificial Anal Sphincter
,”
ASME J. Med. Devices
,
16
(
4
), p.
041006
.10.1115/1.4055001
35.
Han
,
D.
,
Yan
,
G.
,
Wang
,
Z.
,
Jiang
,
P.
,
Liu
,
D.
,
Zhao
,
K.
, and
Ma
,
J.
,
2021
, “
An Artificial Anal Sphincter Based on a Novel Clamping Mechanism: Design, Analysis, and Testing
,”
Artif. Organs
,
45
(
8
), pp.
293
303
.10.1111/aor.13924
36.
Han
,
D.
,
Yan
,
G. Z.
,
Wang
,
L. C.
,
Hua
,
F. F.
, and
Yan
,
L.
,
2022
, “
A Novel Sensor System for In Vivo Perception Reconstruction Based on Long Short-Term Memory Networks
,”
Sensors (Basel, Switzerland)
,
22
(
19
), p.
7407
.10.3390/s22197407
37.
Han
,
D.
,
Yan
,
G.
,
Hua
,
F.
,
Wang
,
L.
,
Wang
,
Z.
,
Jiang
,
P.
, and
Kuang
,
S.
,
2022
, “
Design and Evaluation of Perception Reconstruction With Sensor System for Artificial Anal Sphincter Based on Vector Similarity
,”
Artif. Organs
,
46
(
12
), pp.
2391
2399
.10.1111/aor.14369
You do not currently have access to this content.