Abstract

Neural stimulation therapies continue to evolve as new technologies are introduced into clinical practice. It has been over a decade since the initial descriptions of fully implantable, bidirectional neural systems, which allowed for concurrent sensing and stimulation, have been published. A major confounding issue in these types of neural recordings is the contamination of the signal of interest with electrical stimulus artifact, which can obscure short latency evoked activity and corrupt spectral analysis of longer duration signals. Approach. Here we describe the design and early preclinical evaluation of a neurostimulator with improved capabilities for sensing, with particular emphasis on managing stimulus artifact. The system was tested in three ovine deep brain stimulation (DBS) subjects, one with a DBS lead targeting the hippocampus, and two with DBS leads targeting the subthalamic nucleus (STN). All leads were externalized with percutaneous lead extensions. Main results. Results demonstrate that it was possible to record evoked potentials with a latency of 1–2 ms following stimulation in all subjects with the new system. Recordings from the hippocampal target showed clear short-latency responses exhibiting behavior consistent with evoked compound action potentials (ECAPs). In contrast, recordings from the STN target demonstrated highly resonant activity, dependent upon stimulus frequency, which could persist for 20–30 ms following individual stimuli. Both directional stimulation and directional recordings were evaluated to determine their influence on this evoked resonant neural activity (ERNA). The system was also characterized for sensing in one spinal cord stimulation (SCS) ovine subject and one sacral nerve modulation ovine subject. Significance. The bidirectional stimulation and evoked-response sensing system presented here enables sensing evoked responses elicited from stimulation, empowering continued research to expand the understanding and optimization of DBS therapy. Additionally, the example recordings from other therapy spaces demonstrate the capability of the system across neural stimulation therapies.

References

1.
Hospital
,
Q. E.
,
Ives
,
N.
,
Williams
,
A.
,
Gill
,
S.
,
Varma
,
T.
,
Jenkinson
,
C.
,
Quinn
,
N.
, et al.,
2010
, “
Deep Brain Stimulation Plus Best Medical Therapy Versus Best Medical Therapy Alone for Advanced Parkinson's Disease (PD SURG Trial): a Randomised, Open-Label Trial
,”
Lancet Neurol.
,
9
, pp.
581
591
.10.1016/S1474-4422(10)70093-4
2.
Hubble
,
J. P.
,
Busenbark
,
K. L.
,
Wilkinson
,
S.
,
Penn
,
R. D.
,
Lyons
,
K.
, and
Koller
,
W. C.
,
1996
, “
Deep Brain Stimulation for Essential Tremor
,”
Neurol.
,
46
(
4
), pp.
1150
1153
.10.1212/WNL.46.4.1150
3.
Schjerling
,
L.
,
Hjermind
,
L. E.
,
Jespersen
,
B.
,
Madsen
,
F. F.
,
Brennum
,
J.
,
Jensen
,
S. R.
,
Løkkegaard
,
A.
, and
Karlsborg
,
M.
,
2013
, “
A Randomized Double-Blind Crossover Trial Comparing Subthalamic and Pallidal Deep Brain Stimulation for Dystonia: Clinical Article
,”
J. Neurosurg.
,
119
(
6
), pp.
1537
1545
.10.3171/2013.8.JNS13844
4.
Fisher
,
R.
,
Salanova
,
V.
,
Witt
,
T.
,
Worth
,
R.
,
Henry
,
T.
,
Gross
,
R.
,
Oommen
,
K.
, et al.,
2010
, “
Electrical Stimulation of the Anterior Nucleus of Thalamus for Treatment of Refractory Epilepsy
,”
Epilepsia
,
51
(
5
), pp.
899
908
.10.1111/j.1528-1167.2010.02536.x
5.
Shealy
,
C. N.
,
Mortimer
,
J. T.
, and
Reswick
,
J. B.
,
1967
, “
Electrical Inhibition of Pain by Stimulation of the Dorsal Columns: Preliminary Clinical Report
,”
Anesth. Analg.
,
46
(
4
), pp.
489
491
.https://oce.ovid.com/article/00000539-196707000-00025/HTML
6.
Banakhar
,
M. A.
,
Al-Shaiji
,
T.
, and
Hassouna
,
M.
,
2012
, “
Sacral Neuromodulation and Refractory Overactive Bladder: An Emerging Tool for an Old Problem
,”
Ther. Adv. Urol.
,
4
(
4
), pp.
179
185
.10.1177/1756287212445179
7.
Stanslaski
,
S.
,
Herron
,
J.
,
Chouinard
,
T.
,
Bourget
,
D.
,
Isaacson
,
B.
,
Kremen
,
V.
,
Opri
,
E.
, et al.,
2018
, “
A Chronically Implantable Neural Coprocessor for Investigating the Treatment of Neurological Disorders
,”
IEEE Trans. Biomed. Circuits Syst.
,
12
(
6
), pp.
1230
1245
.10.1109/TBCAS.2018.2880148
8.
Chakravarthy
,
K.
,
Bink
,
H.
, and
Dinsmoor
,
D.
,
2020
, “
Sensing Evoked Compound Action Potentials From the Spinal Cord: Novel Preclinical and Clinical Considerations for the Pain Management Researcher and Clinician
,”
J. Pain Res.
,
13
, pp.
3269
3279
.10.2147/JPR.S289098
9.
Sinclair
,
N. C.
,
McDermott
,
H. J.
,
Bulluss
,
K. J.
,
Fallon
,
J. B.
,
Perera
,
T.
,
Xu
,
S. S.
,
Brown
,
P.
, and
Thevathasan
,
W.
,
2018
, “
Subthalamic Nucleus Deep Brain Stimulation Evokes Resonant Neural Activity
,”
Ann. Neurol.
,
83
(
5
), pp.
1027
1031
.10.1002/ana.25234
10.
Sinclair
,
N. C.
,
Fallon
,
J. B.
,
Bulluss
,
K. J.
,
Thevathasan
,
W.
, and
McDermott
,
H. J.
,
2019
, “
On the Neural Basis of Deep Brain Stimulation Evoked Resonant Activity
,”
Biomed. Phys. Eng. Express
,
5
(
5
), p.
057001
.10.1088/2057-1976/ab366e
11.
Ozturk
,
M.
,
Viswanathan
,
A.
,
Sheth
,
S. A.
, and
Ince
,
N. F.
,
2021
, “
Electroceutically Induced Subthalamic High-Frequency Oscillations and Evoked Compound Activity May Explain the Mechanism of Therapeutic Stimulation in Parkinson's Disease
,”
Commun. Biol.
,
4
(
1
), pp.
1
14
.10.1038/s42003-021-01915-7
12.
Su
,
X.
,
Cutinella
,
M.
,
Koppes
,
S.
,
Agran
,
J. E.
, and
Dinsmoor
,
D. A.
,
2019
, “
Electromyographic Responses Across Different Pulse-Widths of Sacral Neuromodulation in Sheep
,”
Neuromodulation
,
22
(
6
), pp.
684
689
.10.1111/ner.12779
13.
Chakravarthy
,
K.
,
FitzGerald
,
J.
,
Will
,
A.
,
Trutnau
,
K.
,
Corey
,
R.
,
Dinsmoor
,
D.
, and
Litvak
,
L.
,
2021
, “
A Clinical Feasibility Study of Spinal Evoked Compound Action Potential Estimation Methods
,”
Neuromodulation
,
25
(
1
), pp.
75
84
.10.1111/ner.13510
14.
Kent
,
A. R.
, and
Grill
,
W. M.
,
2012
, “
Recording Evoked Potentials During Deep Brain Stimulation: Development and Validation of Instrumentation to Suppress the Stimulus Artefact
,”
J. Neural Eng.
,
9
(
3
), p.
036004
.10.1088/1741-2560/9/3/036004
15.
Stypulkowski
,
P. H.
,
Stanslaski
,
S. R.
,
Jensen
,
R. M.
,
Denison
,
T. J.
, and
Giftakis
,
J. E.
,
2014
, “
Brain Stimulation for epilepsy - Local and Remote Modulation of Network Excitability
,”
Brain Stimul.
,
7
(
3
), pp.
350
358
.10.1016/j.brs.2014.02.002
16.
Cheung
,
T.
,
Nuño
,
M.
,
Hoffman
,
M.
,
Katz
,
M.
,
Kilbane
,
C.
,
Alterman
,
R.
, and
Tagliati
,
M.
,
2013
, “
Longitudinal Impedance Variability in Patients With Chronically Implanted DBS Devices
,”
Brain Stimul.
,
6
(
5
), pp.
746
751
.10.1016/j.brs.2013.03.010
17.
Stypulkowski
,
P. H.
,
Stanslaski
,
S. R.
, and
Giftakis
,
J. E.
,
2017
, “
Modulation of Hippocampal Activity With Fornix Deep Brain Stimulation
,”
Brain Stimul.
,
10
(
6
), pp.
1125
1132
.10.1016/j.brs.2017.09.002
18.
Lentz
,
L.
,
Zhao
,
Y.
,
Kelly
,
M. T.
,
Schindeldecker
,
W.
,
Goetz
,
S.
,
Nelson
,
D. E.
, and
Raike
,
R. S.
,
2015
, “
Motor Behaviors in the Sheep Evoked by Electrical Stimulation of the Subthalamic Nucleus
,”
Exp. Neurol.
,
273
, pp.
69
82
.10.1016/j.expneurol.2015.07.022
19.
Brink
,
T. S.
,
Zimmerman
,
P. L.
,
Mattson
,
M. A.
,
Su
,
X.
, and
Nelson
,
D. E.
,
2015
, “
A Chronic, Conscious Large Animal Platform to Quantify Therapeutic Effects of Sacral Neuromodulation on Bladder Function
,”
J. Urol.
,
194
(
1
), pp.
252
258
.10.1016/j.juro.2015.01.109
20.
Swann
,
N. C.
,
De Hemptinne
,
C.
,
Miocinovic
,
S.
,
Qasim
,
S.
,
Wang
,
S. S.
,
Ziman
,
N.
,
Ostrem
,
J. L.
, et al.,
2016
, “
Gamma Oscillations in the Hyperkinetic State Detected With Chronic Human Brain Recordings in Parkinson's Disease
,”
J. Neurosci.
,
36
(
24
), pp.
6445
6458
.10.1523/JNEUROSCI.1128-16.2016
21.
Dale
,
J.
,
Schmidt
,
S. L.
,
Mitchell
,
K.
,
Turner
,
D. A.
, and
Grill
,
W. M.
,
2022
, “
Evoked Potentials Generated by Deep Brain Stimulation for Parkinson's Disease
,”
Brain Stimul.
,
15
(
5
), pp.
1040
1047
.10.1016/j.brs.2022.07.048
You do not currently have access to this content.