The Zika virus (ZIKV) is one of the most infamous mosquito-borne flavivirus on recent memory due to its potential association with high mortality rates in fetuses, microcephaly and neurological impairments in neonates, and autoimmune disorders. The severity of the disease, as well as its fast spread over several continents, has urged the World Health Organization (WHO) to declare ZIKV a global health concern. In consequence, over the past couple of years, there has been a significant effort for the development of ZIKV diagnostic methods, vaccine development, and prevention strategies. This review focuses on the most recent aspects of ZIKV research which includes the outbreaks, genome structure, multiplication and propagation of the virus, and more importantly, the development of serological and molecular detection tools such as Zika IgM antibody capture enzyme-linked immunosorbent assay (Zika MAC-ELISA), plaque reduction neutralization test (PRNT), reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR), reverse transcription-loop mediated isothermal amplification (RT-LAMP), localized surface plasmon resonance (LSPR) biosensors, nucleic acid sequence-based amplification (NASBA), and recombinase polymerase amplification (RPA). Additionally, we discuss the limitations of currently available diagnostic methods, the potential of newly developed sensing technologies, and also provide insight into future areas of research.

References

1.
ECDC
,
2015
, “
Rapid Risk Assessment: Zika Virus Epidemic in the Americas: Potential Association With Microcephaly and Guillain-Barré Syndrome
,” European Centre for Disease Prevention and Control, Stockholm, Sweden, accessed Mar. 6, 2018, http://ecdc.europa.eu/en/publications/Publications/zika-virus-americas-association-with-microcephaly-rapid-risk-assessment.pdf
2.
U.S. CDC,
2018
, “
Facts About Microcephaly
,” Centers for Disease Control and Prevention, Atlanta, GA, accessed Feb. 24, 2018, https://www.cdc.gov/ncbddd/birthdefects/microcephaly.html
3.
Panchaud
,
A.
,
Stojanov
,
M.
,
Ammerdorffer
,
A.
,
Vouga
,
M.
, and
Baud
,
D.
,
2016
, “
Emerging Role of Zika Virus in Adverse Fetal and Neonatal Outcomes
,”
Clin. Microbiol. Rev.
,
29
(
3
), pp.
659
694
.
4.
Tang
,
H.
,
Hammack
,
C.
,
Ogden
,
S. C.
,
Wen
,
Z.
,
Qian
,
X.
,
Li
,
Y.
,
Yao
,
B.
,
Shin
,
J.
,
Zhang
,
F.
,
Lee
,
E. M.
,
Christian
,
K. M.
,
Didier
,
R. A.
,
Jin
,
P.
,
Song
,
H.
, and
Ming
,
G. L.
,
2016
, “
Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth
,”
Cell Stem Cell
,
18
(
5
), pp.
587
590
.
5.
Faria
,
N. R.
,
Azevedo
,
R.
,
Kraemer
,
M. U. G.
,
Souza
,
R.
,
Cunha
,
M. S.
,
Hill
,
S. C.
,
Theze
,
J.
,
Bonsall
,
M. B.
,
Bowden
,
T. A.
,
Rissanen
,
I.
,
Rocco
,
I. M.
,
Nogueira
,
J. S.
,
Maeda
,
A. Y.
,
Vasami
,
F.
,
Macedo
,
F. L. L.
,
Suzuki
,
A.
,
Rodrigues
,
S. G.
,
Cruz
,
A. C. R.
,
Nunes
,
B. T.
,
Medeiros
,
D. B. A.
,
Rodrigues
,
D. S. G.
,
Queiroz
,
A. L. N.
,
da Silva
,
E. V. P.
,
Henriques
,
D. F.
,
da Rosa
,
E. S. T.
,
de Oliveira
,
C. S.
,
Martins
,
L. C.
,
Vasconcelos
,
H. B.
,
Casseb
,
L. M. N.
,
Simith
,
D. B.
,
Messina
,
J. P.
,
Abade
,
L.
,
Lourenco
,
J.
,
Alcantara
,
L. C. J.
,
de Lima
,
M. M.
,
Giovanetti
,
M.
,
Hay
,
S. I.
,
de Oliveira
,
R. S.
,
Lemos
,
P. D. S.
,
de Oliveira
,
L. F.
,
de Lima
,
C. P. S.
,
da Silva
,
S. P.
,
de Vasconcelos
,
J. M.
,
Franco
,
L.
,
Cardoso
,
J. F.
,
Vianez-Junior
,
J.
,
Mir
,
D.
,
Bello
,
G.
,
Delatorre
,
E.
,
Khan
,
K.
,
Creatore
,
M.
,
Coelho
,
G. E.
,
de Oliveira
,
W. K.
,
Tesh
,
R.
,
Pybus
,
O. G.
,
Nunes
,
M. R. T.
, and
Vasconcelos
,
P. F. C.
,
2016
, “
Zika Virus in the Americas: Early Epidemiological and Genetic Findings
,”
Science
,
352
(
6283
), pp.
345
349
.
6.
Brasil
,
P.
,
Pereira
,
J. P.
, Jr.,
Moreira
,
M. E.
,
Ribeiro Nogueira
,
R. M.
,
Damasceno
,
L.
,
Wakimoto
,
M.
,
Rabello
,
R. S.
,
Valderramos
,
S. G.
,
Halai
,
U. A.
,
Salles
,
T. S.
,
Zin
,
A. A.
,
Horovitz
,
D.
,
Daltro
,
P.
,
Boechat
,
M.
,
Raja Gabaglia
,
C.
,
Carvalho de Sequeira
,
P.
,
Pilotto
,
J. H.
,
Medialdea-Carrera
,
R.
,
Cotrim da Cunha
,
D.
,
Abreu de Carvalho
,
L. M.
,
Pone
,
M.
,
Machado Siqueira
,
A.
,
Calvet
,
G. A.
,
Rodrigues Baiao
,
A. E.
,
Neves
,
E. S.
,
Nassar de Carvalho
,
P. R.
,
Hasue
,
R. H.
,
Marschik
,
P. B.
,
Einspieler
,
C.
,
Janzen
,
C.
,
Cherry
,
J. D.
,
Bispo de Filippis
,
A. M.
, and
Nielsen-Saines
,
K.
,
2016
, “
Zika Virus Infection in Pregnant Women in Rio De Janeiro
,”
N. Engl. J. Med.
,
375
(
24
), pp.
2321
2334
.
7.
Pacheco
,
O.
,
Beltrán
,
M.
,
Nelson
,
C. A.
,
Valencia
,
D.
,
Tolosa
,
N.
,
Farr
,
S. L.
,
Padilla
,
A. V.
,
Tong
,
V. T.
,
Cuevas
,
E. L.
,
Espinosa-Bode
,
A.
,
Pardo
,
L.
,
Rico
,
A.
,
Reefhuis
,
J.
,
González
,
M.
,
Mercado
,
M.
,
Chaparro
,
P.
,
Martínez Duran
,
M.
,
Rao
,
C. Y.
,
Muñoz
,
M. M.
,
Powers
,
A. M.
,
Cuéllar
,
C.
,
Helfand
,
R.
,
Huguett
,
C.
,
Jamieson
,
D. J.
,
Honein
,
M. A.
,
O.
, and
Martínez
,
M. L.
, “
Zika Virus Disease in Colombia—Preliminary Report
,”
New Engl. J. Med.
(epub).
8.
Musso
,
D.
, and
Gubler
,
D. J.
,
2016
, “
Zika Virus
,”
Clin. Microbiol. Rev.
,
29
(
3
), pp.
487
524
.
9.
Rodriguez
,
Y.
,
Rojas
,
M.
,
Pacheco
,
Y.
,
Acosta-Ampudia
,
Y.
,
Ramirez-Santana
,
C.
,
Monsalve
,
D. M.
,
Gershwin
,
M. E.
, and
Anaya
,
J. M.
,
2018
, “
Guillain-Barre Syndrome, Transverse Myelitis and Infectious Diseases
,”
Cell Mol. Immunol.
,
15
, pp. 547–562.
10.
Kuwabara
,
S.
,
2004
, “
Guillain-Barre Syndrome: Epidemiology, Pathophysiology and Management
,”
Drugs
,
64
(
6
), pp.
597
610
.
11.
Araujo
,
A. Q.
,
Silva
,
M. T.
, and
Araujo
,
A. P.
,
2016
, “
Zika Virus-Associated Neurological Disorders: A Review
,”
Brain
,
139
(
8
), pp.
2122
2130
.
12.
WHO
,
2016
, “
WHO Statement on the First Meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations
,” World Health Organization, Geneva, Switzerland, accessed Aug. 21, 2018, http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/
13.
Martinez-Pulgarin
,
D. F.
,
Acevedo-Mendoza
,
W. F.
,
Cardona-Ospina
,
J. A.
,
Rodriguez-Morales
,
A. J.
, and
Paniz-Mondolfi
,
A. E.
,
2016
, “
A Bibliometric Analysis of Global Zika Research
,”
Travel Med. Infect. Dis.
,
14
(
1
), pp.
55
57
.
14.
Posen
,
H. J.
,
Keystone
,
J. S.
,
Gubbay
,
J. B.
, and
Morris
,
S. K.
,
2016
, “
Epidemiology of Zika Virus, 1947-2007
,”
BMJ Glob. Health
,
1
(
2
), p.
e000087
.
15.
Wikan
,
N.
, and
Smith
,
D. R.
,
2016
, “
Zika Virus: History of a Newly Emerging Arbovirus
,”
Lancet Infect. Dis.
,
16
(
7
), pp.
e119
e126
.
16.
Duffy
,
M. R.
,
Chen
,
T. H.
,
Hancock
,
W. T.
,
Powers
,
A. M.
,
Kool
,
J. L.
,
Lanciotti
,
R. S.
,
Pretrick
,
M.
,
Marfel
,
M.
,
Holzbauer
,
S.
,
Dubray
,
C.
,
Guillaumot
,
L.
,
Griggs
,
A.
,
Bel
,
M.
,
Lambert
,
A. J.
,
Laven
,
J.
,
Kosoy
,
O.
,
Panella
,
A.
,
Biggerstaff
,
B. J.
,
Fischer
,
M.
, and
Hayes
,
E. B.
,
2009
, “
Zika Virus Outbreak on Yap Island, Federated States of Micronesia
,”
N. Engl. J. Med.
,
360
(
24
), pp.
2536
2543
.
17.
Musso
,
D.
,
Nilles
,
E. J.
, and
Cao-Lormeau
,
V. M.
,
2014
, “
Rapid Spread of Emerging Zika Virus in the Pacific Area
,”
Clin. Microbiol. Infect.
,
20
(
10
), pp.
O595
596
.
18.
Baud
,
D.
,
Gubler
,
D. J.
,
Schaub
,
B.
,
Lanteri
,
M. C.
, and
Musso
,
D.
,
2017
, “
An Update on Zika Virus Infection
,”
Lancet
,
390
(
10107
), pp.
2099
2109
.
19.
Brito
,
C. A.
, and
Cordeiro
,
M. T.
,
2016
, “
One Year After the Zika Virus Outbreak in Brazil: From Hypotheses to Evidence
,”
Rev. Soc. Bras. Med. Trop.
,
49
(
5
), pp.
537
543
.
20.
Chang
,
C.
,
Ortiz
,
K.
,
Ansari
,
A.
, and
Gershwin
,
M. E.
,
2016
, “
The Zika Outbreak of the 21st Century
,”
J. Autoimmun.
,
68
, pp.
1
13
.
21.
Dasti
,
J. I.
,
2016
, “
Zika Virus Infections: An Overview of Current Scenario
,”
Asian Pac. J. Trop. Med.
,
9
(
7
), pp.
621
625
.
22.
Kindhauser
,
M. K.
,
Allen
,
T.
,
Frank
,
V.
,
Santhana
,
R. S.
, and
Dye
,
C.
,
2016
, “
Zika: The Origin and Spread of a Mosquito-Borne Virus
,”
Bull. World Health Organ.
,
94
(
9
), pp.
675
686C
.
23.
Besnard
,
M.
,
Lastère
,
S.
,
Teissier
,
A.
,
Cao-Lormeau
,
V. M.
, and
Musso
,
D.
,
2014
, “
Evidence of Perinatal Transmission of Zika Virus, French Polynesia, December 2013 and February 2014
,”
Eurosurveillance
,
19
(
13
), p.
20751
.
24.
Patino-Barbosa
,
A. M.
,
Medina
,
I.
,
Gil-Restrepo
,
A. F.
, and
Rodriguez-Morales
,
A. J.
,
2015
, “
Zika: Another Sexually Transmitted Infection?
,”
Sex Transm. Infect.
,
91
(
5
), p.
359
.
25.
Sharma
,
A.
, and
Lal
,
S. K.
,
2017
, “
Zika Virus: Transmission, Detection, Control, and Prevention
,”
Front. Microbiol.
,
8
, p.
110
.
26.
Besnard
,
M.
,
Lastere
,
S.
,
Teissier
,
A.
,
Cao-Lormeau
,
V.
, and
Musso
,
D.
,
2014
, “
Evidence of Perinatal Transmission of Zika Virus, French
,”
Euro Surveill.
,
19
(
13
), p. 20751.https://www.eurosurveillance.org/content/10.2807/1560-7917.ES2014.19.13.20751
27.
Perera-Lecoin
,
M.
,
Meertens
,
L.
,
Carnec
,
X.
, and
Amara
,
A.
,
2013
, “
Flavivirus Entry Receptors: An Update
,”
Viruses
,
6
(
1
), pp.
69
88
.
28.
Saiz
,
J. C.
,
Vazquez-Calvo
,
A.
,
Blazquez
,
A. B.
,
Merino-Ramos
,
T.
,
Escribano-Romero
,
E.
, and
Martin-Acebes
,
M. A.
,
2016
, “
Zika Virus: The Latest Newcomer
,”
Front. Microbiol.
,
7
, p.
496
.
29.
Heinz, F. X., and Stiasny, K., 2017, “
The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis
,”
Microbiol. Mol. Biol. Rev.
,
81
(1), p. e00055-16.
30.
Okafor II, Ezugwu, F., and Ekwochi, U., 2016 “
Zika Virus: The Emerging Global Health Challenge
,”
Diversity and Equality in Health and Care
,
13
(6), pp. 394–401.http://diversityhealthcare.imedpub.com/zika-virus-the-emerging-global-health-challenge.php?aid=17625
31.
Lanciotti
,
R. S.
,
Kosoy
,
O. L.
,
Laven
,
J. J.
,
Velez
,
J. O.
,
Lambert
,
A. J.
,
Johnson
,
A. J.
,
Stanfield
,
S. M.
, and
Duffy
,
M. R.
,
2008
, “
Genetic and Serologic Properties of Zika Virus Associated With an Epidemic, Yap State, Micronesia, 2007
,”
Emerg. Infect. Dis.
,
14
(
8
), pp.
1232
1239
.
32.
Musso
,
D.
,
Rouault
,
E.
,
Teissier
,
A.
,
Lanteri
,
M. C.
,
Zisou
,
K.
,
Broult
,
J.
,
Grange
,
E.
,
Nhan
,
T. X.
, and
Aubry
,
M.
,
2017
, “
Molecular Detection of Zika Virus in Blood and RNA Load Determination During the French Polynesian Outbreak
,”
J. Med. Virol.
,
89
(
9
), pp.
1505
1510
.
33.
Bonaldo
,
M. C.
,
Ribeiro
,
I. P.
,
Lima
,
N. S.
,
dos Santos
,
A. A. C.
,
Menezes
,
L. S. R.
,
da Cruz
,
S. O. D.
,
de Mello
,
I. S.
,
Furtado
,
N. D.
,
de Moura
,
E. E.
,
Damasceno
,
L.
,
da Silva
,
K. A. B.
,
de Castro
,
M. G.
,
Gerber
,
A. L.
,
de Almeida
,
L. G. P.
,
Lourenço-de-Oliveira
,
R.
,
Vasconcelos
,
A. T. R.
, and
Brasil
,
P.
,
2016
, “
Isolation of Infective Zika Virus From Urine and Saliva of Patients in Brazil
,”
PLOS Neglected Trop. Dis.
,
10
(
6
), p.
e0004816
.
34.
Yang
,
L.
,
Wang
,
K.
,
Li
,
H.
,
Denstedt
,
J. D.
, and
Cadieux
,
P. A.
,
2014
, “
The Influence of Urinary pH on Antibiotic Efficacy Against Bacterial Uropathogens
,”
Urology
,
84
(
3
), p.
e731737
.
35.
Baliga
,
S.
,
Muglikar
,
S.
, and
Kale
,
R.
,
2013
, “
Salivary pH: A Diagnostic Biomarker
,”
J. Indian Soc. Periodontol.
,
17
(
4
), pp.
461
465
.
36.
Stiasny
,
K.
, and
Heinz
,
F. X.
,
2006
, “
Flavivirus Membrane Fusion
,”
J. Gen. Virol.
,
87
(
Pt. 10
), pp.
2755
2766
.
37.
Calvet
,
G. A.
,
Santos
,
F. B.
, and
Sequeira
,
P. C.
,
2016
, “
Zika Virus Infection: Epidemiology, Clinical Manifestations and Diagnosis
,”
Curr. Opin. Infect. Dis.
,
29
(
5
), pp.
459
466
.
38.
Shan
,
C.
,
Xie
,
X.
,
Ren
,
P.
,
Loeffelholz
,
M. J.
,
Yang
,
Y.
,
Furuya
,
A.
,
Dupuis
,
A. P.
, II,
Kramer
,
L. D.
,
Wong
,
S. J.
, and
Shi
,
P. Y.
,
2017
, “
A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients
,”
EBioMedicine
,
17
, pp.
157
162
.
39.
Hologic
,
2018
, “
Aptima Zika Virus Assay
,” Hologic, Marlborough, MA, accessed Mar. 16, 2018, https://www.hologic.com/sites/default/files/package-insert/AW-15406_003_01.pdf
40.
Nanobiosym Diagnostics
,
2017
, “
Gene-RADAR Zika Virus Test Instructions for Use
,” Nanobiosym Diagnostics, Cambridge, MA, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM547674.pdf
41.
Altona Diagnostics
,
2017
, “
RealStar® Zika Virus RT-PCR Kit U.S. Instructions for Use
,” Altona Diagnostics, Hamburg, Germany, Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM501027.pdf
42.
Abbott
,
2016
, “
Real Time Zika Instructions for Use
,” Abbott, Chicago, IL, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM530358.pdf
43.
Vela Diagnostics
,
2016
, “
Sentosa® SA ZIKV RT-PCR Test Instructions for Use
,” Vela Diagnostics, Kendall, Singapore, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM522374.pdf
44.
Thermo Fisher Scientific
,
2017
, “
TaqPath Zika Virus Kit Instructions for Use
,” Thermo Fisher Scientific, Foster City, CA, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM569943.pdf
45.
CDC
,
2017
, “
Trioplex Real-Time RT-PCR Assay
,” Center for Disease Control & Prevention (CDC), Atlanta, GA, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM491592.pdf
46.
Siemens
,
2016
, “
VERSANT Zika RNA 1.0 Assay Kit
,” Siemens, Tarrytown, NY, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM514170.pdf
47.
Luminex
,
2017
, “
xMAP® MultiFLEX™ Zika RNA Assay Instructions for Use
,” Luminex, Austin, TX, acessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM515137.pdf
48.
ARUP Laboratories
,
2016
, “
Zika Virus Detection by RT-PCR Test Instructions for Use
,” ARUP Laboratories, Salt Lake City, UT, accessed Mar. 17, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM523094.pdf
49.
Viracor Eurofins
,
2017
, “
Zika Virus Real-Time RT-PCR Test Instructions for Use
,” Viracor Eurofins, Lees Summit, MO, accessed Mar. 19, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM512035.pdf
50.
Quest Diagnostics
,
2017
, “
Zika Virus RNA Qualitative Real-Time RT-PCR Instructions for Use
,” Quest Diagnostics, Cypress, CA, accessed Mar. 19, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM498278.pdf
51.
ELITechGroup,
2016
, “
Zika ELITe MGB Kit Instructions for Use
,” ELITechGroup, Bothell, WA, accessed Mar. 19, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM532553.pdf
52.
Siemens Diagnostics
,
2017
, “
ADVIA Centaur Zika Test Instructions for Use
,” Siemens Diagnostics, Tarrytown, NY, accessed Mar. 19, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM576528.pdf
53.
Chembio Diagnostic
,
2018
, “
DPP Zika IgM Assay System Instructions for Use
,” Chembio Diagnostic, Medford, NY, accessed Mar. 19, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM577856.pdf
54.
DiaSorin,
2017
, “
LIAISON XL Zika Capture IgM Assay Instructions for Use
,” DiaSorin, Stillwater, MN, accessed Mar. 20, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM551082.pdf
55.
CDC
,
2017
, “
Zika MAC-ELISA Instructions for Use
,” Center for Disease Control & Prevention (CDC), Atlanta, GA, accessed Mar. 20, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM488044.pdf
56.
InBios International
,
2017
, “
ZIKV Detect IgM Capture ELISA Instructions for Use
,” InBios International, Seattle, WA, accessed Mar. 20, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM517147.pdf
57.
U.S. CDC
,
2017
, “
Types of Zika Virus Test
,” U.S Centers for Disease Control & Prevention (CDC), Atlanta, GA, accessed Mar. 21, 2018, https://www.cdc.gov/zika/laboratories/types-of-tests.html
58.
U.S. CDC
,
2017
, “
Trioplex Real-Time RT-PCR Assay
,” U.S. Centers for Disease Control & Prevention (CDC), Atlanta, GA, Apr. 2, 2018, http://www.cdc.gov/zika/pdfs/trioplex-real-time-rt-pcr-assay-instructions-for-use.pdf
59.
Coarsey
,
C. T.
,
Esiobu
,
N.
,
Narayanan
,
R.
,
Pavlovic
,
M.
,
Shafiee
,
H.
, and
Asghar
,
W.
,
2017
, “
Strategies in Ebola Virus Disease (EVD) Diagnostics at the Point of Care
,”
Crit. Rev. Microbiol.
,
43
(
6
), pp.
779
798
.
60.
Safavieh
,
M.
,
Coarsey
,
C.
,
Esiobu
,
N.
,
Memic
,
A.
,
Vyas
,
J. M.
,
Shafiee
,
H.
, and
Asghar
,
W.
,
2017
, “
Advances in Candida Detection Platforms for Clinical and Point-of-Care Applications
,”
Crit. Rev. Biotechnol.
,
37
(
4
), pp.
441
458
.
61.
Charrel
,
R. N.
,
Leparc-Goffart
,
I.
,
Pas
,
S.
,
de Lamballerie
,
X.
,
Koopmans
,
M.
, and
Reusken
,
C.
,
2016
, “
Background Review for Diagnostic Test Development for Zika Virus Infection
,”
Bull World Health Organ.
,
94
(
8
), pp.
574
584
.
62.
U.S FDA
,
2018
, “
Zika Mac-ELISA Instructions for Use
,” U.S Food and Drug Administration (FDA), Atlanta, GA, accessed Apr. 2, 2018, https://www.fda.gov/downloads/MedicalDevices/Safety/EmergencySituations/UCM488044.pdf
63.
Priyamvada
,
L.
,
Quicke
,
K. M.
,
Hudson
,
W. H.
,
Onlamoon
,
N.
,
Sewatanon
,
J.
,
Edupuganti
,
S.
,
Pattanapanyasat
,
K.
,
Chokephaibulkit
,
K.
,
Mulligan
,
M. J.
,
Wilson
,
P. C.
,
Ahmed
,
R.
,
Suthar
,
M. S.
, and
Wrammert
,
J.
,
2016
, “
Human Antibody Responses After Dengue Virus Infection Are Highly Cross-Reactive to Zika Virus
,”
Proc. Natl. Acad. Sci. U. S. A.
,
113
(
28
), pp.
7852
7857
.
64.
Nicolini
,
A. M.
,
McCracken
,
K. E.
, and
Yoon
,
J. Y.
,
2017
, “
Future Developments in Biosensors for Field-Ready Zika Virus Diagnostics
,”
J. Biol. Eng
,,
11
, p.
7
.
65.
Lee
,
W. T.
,
Wong
,
S. J.
,
Kulas
,
K. E.
,
Dupuis
,
A. P.
, II
,
Payne
,
A. F.
,
Kramer
,
L. D.
,
Dean
,
A. B.
,
St George
,
K.
,
White
,
J. L.
,
Sommer
,
J. N.
,
Ledizet
,
M.
, and
Limberger
,
R. J.
,
2018
, “
Development of Zika Virus Serological Testing Strategies in New York State
,”
J. Clin. Microbiol.
,
56
(
3
), p. JCM-01591.
66.
Shan
,
C.
,
Ortiz
,
D. A.
,
Yang
,
Y.
,
Wong
,
S. J.
,
Kramer
,
L. D.
,
Shi
,
P.-Y.
,
Loeffelholz
,
M. J.
, and
Ren
,
P.
,
2017
, “
Evaluation of a Novel Reporter Virus Neutralization Test for Serological Diagnosis of Zika and Dengue Virus Infection
,”
J. Clin. Microbiol.
,
55
(
10
), pp.
3028
3036
.
67.
Garg
,
H.
,
Sedano
,
M.
,
Plata
,
G.
,
Punke
,
E. B.
, and
Joshi
,
A.
,
2017
, “
Development of Virus-Like-Particle Vaccine and Reporter Assay for Zika Virus
,”
J. Virol.
,
91
(
20
), p. JVI-00834.
68.
Wong
,
S. J.
,
Furuya
,
A.
,
Zou
,
J.
,
Xie
,
X.
,
Dupuis
,
A. P.
,
Kramer
,
L. D.
, and
Shi
,
P.-Y.
,
2017
, “
A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis
,”
EBioMedicine
,
16
, pp.
136
140
.
69.
Shafiee
,
H.
,
Asghar
,
W.
,
Inci
,
F.
,
Yuksekkaya
,
M.
,
Jahangir
,
M.
,
Zhang
,
M. H.
,
Durmus
,
N. G.
,
Gurkan
,
U. A.
,
Kuritzkes
,
D. R.
, and
Demirci
,
U.
,
2015
, “
Paper and Flexible Substrates as Materials for Biosensing Platforms to Detect Multiple Biotargets
,”
Sci. Rep.
,
5
(
1
), p.
8719
.
70.
Sher
,
M.
,
Zhuang
,
R.
,
Demirci
,
U.
, and
Asghar
,
W.
,
2017
, “
Based Analytical Devices for Clinical Diagnosis: Recent Advances in the Fabrication Techniques and Sensing Mechanisms
,”
Expert Rev. Mol. Diagn.
,
17
(
4
), pp.
351
366
.
71.
Posthuma-Trumpie
,
G. A.
,
Korf
,
J.
, and
van Amerongen
,
A.
,
2009
, “
Lateral Flow (Immuno) Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey
,”
Anal. Bioanal. Chem.
,
393
(
2
), pp.
569
582
.
72.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Whitesides
,
G. M.
, and
Carrilho
,
E.
,
2009
,
Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices
,
ACS Publications
, Washington, DC.
73.
Bedin
,
F.
,
Boulet
,
L.
,
Voilin
,
E.
,
Theillet
,
G.
,
Rubens
,
A.
, and
Rozand
,
C.
,
2017
, “
Paper-Based Point-of-Care Testing for Cost-Effective Diagnosis of Acute Flavivirus Infections
,”
J. Med. Virol.
,
89
(
9
), pp.
1520
1527
.
74.
Draz
,
M. S.
,
Moazeni
,
M.
,
Venkataramani
,
M.
,
Lakshminarayanan
,
H.
,
Saygili
,
E.
,
Lakshminaraasimulu
,
N. K.
,
Kochehbyoki
,
K. M.
,
Kanakasabapathy
,
M. K.
,
Shabahang
,
S.
, and
Vasan
,
A.
,
2018
, “
Hybrid Paper–Plastic Microchip for Flexible and High‐Performance Point‐of‐Care Diagnostics
,”
Adv. Funct. Mater.
,
28
(
26
), p.
1707161
.
75.
Martinez
,
A. W.
,
Phillips
,
S. T.
,
Butte
,
M. J.
, and
Whitesides
,
G. M.
,
2007
, “
Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays
,”
Angew. Chem. Int. Ed. Engl.
,
46
(
8
), pp.
1318
1320
.
76.
Tokel
,
O.
,
Inci
,
F.
, and
Demirci
,
U.
,
2014
, “
Advances in Plasmonic Technologies for Point of Care Applications
,”
Chem. Rev.
,
114
(
11
), pp.
5728
5752
.
77.
Adegoke
,
O.
,
Morita
,
M.
,
Kato
,
T.
,
Ito
,
M.
,
Suzuki
,
T.
, and
Park
,
E. Y.
,
2017
, “
Localized Surface Plasmon Resonance-Mediated Fluorescence Signals in Plasmonic Nanoparticle-Quantum Dot Hybrids for Ultrasensitive Zika Virus RNA Detection Via Hairpin Hybridization Assays
,”
Biosens. Bioelectron.
,
94
, pp.
513
522
.
78.
Pardee
,
K.
,
Green
,
A. A.
,
Takahashi
,
M. K.
,
Braff
,
D.
,
Lambert
,
G.
,
Lee
,
J. W.
,
Ferrante
,
T.
,
Ma
,
D.
,
Donghia
,
N.
,
Fan
,
M.
,
Daringer
,
N. M.
,
Bosch
,
I.
,
Dudley
,
D. M.
,
O'Connor
,
D. H.
,
Gehrke
,
L.
, and
Collins
,
J. J.
,
2016
, “
Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components
,”
Cell
,
165
(
5
), pp.
1255
1266
.
79.
Safavieh
,
M.
,
Kanakasabapathy
,
M. K.
,
Tarlan
,
F.
,
Ahmed
,
M. U.
,
Zourob
,
M.
,
Asghar
,
W.
, and
Shafiee
,
H.
,
2016
, “
Emerging Loop-Mediated Isothermal Amplification-Based Microchip and Microdevice Technologies for Nucleic Acid Detection
,”
ACS Biomater. Sci. Eng.
,
2
(
3
), pp.
278
294
.
80.
Song
,
J.
,
Liu
,
C.
,
Mauk
,
M. G.
,
Rankin
,
S. C.
,
Lok
,
J. B.
,
Greenberg
,
R. M.
, and
Bau
,
H. H.
,
2017
, “
Two-Stage Isothermal Enzymatic Amplification for Concurrent Multiplex Molecular Detection
,”
Clin. Chem.
,
63
(
3
), pp.
714
722
.
81.
Song
,
J.
,
Mauk
,
M. G.
,
Hackett
,
B. A.
,
Cherry
,
S.
,
Bau
,
H. H.
, and
Liu
,
C.
,
2016
, “
Instrument-Free Point-of-Care Molecular Detection of Zika Virus
,”
Anal. Chem.
,
88
(
14
), pp.
7289
7294
.
82.
Chotiwan
,
N.
,
Brewster
,
C. D.
,
Magalhaes
,
T.
,
Weger-Lucarelli
,
J.
,
Duggal
,
N. K.
,
Ruckert
,
C.
,
Nguyen
,
C.
,
Garcia Luna
,
S. M.
,
Fauver
,
J. R.
,
Andre
,
B.
,
Gray
,
M.
,
Black
,
W. C. T.
,
Kading
,
R. C.
,
Ebel
,
G. D.
,
Kuan
,
G.
,
Balmaseda
,
A.
,
Jaenisch
,
T.
,
Marques
,
E. T. A.
,
Brault
,
A. C.
,
Harris
,
E.
,
Foy
,
B. D.
,
Quackenbush
,
S. L.
,
Perera
,
R.
, and
Rovnak
,
J.
,
2017
, “
Rapid and Specific Detection of Asian- and African-Lineage Zika Viruses
,”
Sci. Transl. Med.
,
9
(
388
), p. eaag0538.
83.
Wang
,
X.
,
Yin
,
F.
,
Bi
,
Y.
,
Cheng
,
G.
,
Li
,
J.
,
Hou
,
L.
,
Li
,
Y.
,
Yang
,
B.
,
Liu
,
W.
, and
Yang
,
L.
,
2016
, “
Rapid and Sensitive Detection of Zika Virus by Reverse Transcription Loop-Mediated Isothermal Amplification
,”
J. Virol. Methods
,
238
, pp.
86
93
.
84.
Karthik
,
K.
,
Rathore
,
R.
,
Thomas
,
P.
,
Arun
,
T. R.
,
Viswas
,
K. N.
,
Dhama
,
K.
, and
Agarwal
,
R. K.
,
2014
, “
New Closed Tube Loop Mediated Isothermal Amplification Assay for Prevention of Product Cross-Contamination
,”
MethodsX
,
1
, pp.
137
143
.
85.
Chan
,
K.
,
Wong
,
P.-Y.
,
Parikh
,
C.
, and
Wong
,
S.
,
2018
, “
Moving Toward Rapid and Low-Cost Point-of-Care Molecular Diagnostics With a Repurposed 3D Printer and RPA
,”
Anal. Biochem.
,
545
, pp.
4
12
.
86.
Chan
,
K.
,
Weaver
,
S. C.
,
Wong
,
P.-Y.
,
Lie
,
S.
,
Wang
,
E.
,
Guerbois
,
M.
,
Vayugundla
,
S. P.
, and
Wong
,
S.
,
2016
, “
Rapid, Affordable and Portable Medium-Throughput Molecular Device for Zika Virus
,”
Sci. Rep.
,
6
(
1
), p.
38223
.
87.
Sharma
,
S.
,
Zhuang
,
R.
,
Long
,
M.
,
Pavlovic
,
M.
,
Kang
,
Y.
,
Ilyas
,
A.
, and
Asghar
,
W.
,
2018
, “
Circulating Tumor Cell Isolation, Culture, and Downstream Molecular Analysis
,”
Biotechnol. Adv.
,
36
(4), pp. 1063–1078.
88.
Yu
,
S.
,
Rubin
,
M.
,
Geevarughese
,
S.
,
Pino
,
J.
,
Rodriguez
,
H.
, and
Asghar
,
W.
,
2018
, “
Emerging Technologies for Home‐Based Semen Analysis
,”
Andrology
,
6
(
1
), pp.
10
19
.
89.
Fennel
,
R.
, and
Asghar
,
W.
,
2017
, “
Image Sensor Road Map and Solid-State Imaging Devices
,”
NanoWorld
,
1
(
4
), pp.
10
14
.https://www.researchgate.net/publication/317648790_Image_Sensor_Road_Map_and_Solid-State_Imaging_Devices
90.
Kanakasabapathy
,
M. K.
,
Pandya
,
H. J.
,
Draz
,
M. S.
,
Chug
,
M. K.
,
Sadasivam
,
M.
,
Kumar
,
S.
,
Etemad
,
B.
,
Yogesh
,
V.
,
Safavieh
,
M.
, and
Asghar
,
W.
,
2017
, “
Rapid, Label-Free CD4 Testing Using a Smartphone Compatible Device
,”
Lab Chip
,
17
(
17
), pp.
2910
2919
.
91.
Islam
,
M.
,
Asghar
,
W.
,
Kim
,
Y.-T.
, and
Iqbal
,
S. M.
,
2014
, “
Cell Elasticity-Based Microfluidic Label-Free Isolation of Metastatic Tumor Cells
,”
British Journal of Medicine and Medical Research
,
4
(11), pp. 2129–2140.
92.
Ilyas
,
A.
,
Asghar
,
W.
,
Ahmed
,
S.
,
Lotan
,
Y.
,
Hsieh
,
J.-T.
,
Kim
,
Y.-T.
, and
Iqbal
,
S. M.
,
2014
, “
Electrophysiological Analysis of Biopsy Samples Using Elasticity as an Inherent Cell Marker for Cancer Detection
,”
Anal. Methods
,
6
(
18
), pp.
7166
7174
.
93.
Asghar
,
W.
,
Yuksekkaya
,
M.
,
Shafiee
,
H.
,
Zhang
,
M.
,
Ozen
,
M. O.
,
Inci
,
F.
,
Kocakulak
,
M.
, and
Demirci
,
U.
,
2016
, “
Engineering Long Shelf Life Multi-Layer Biologically Active Surfaces on Microfluidic Devices for Point of Care Applications
,”
Sci. Rep.
,
6
(
1
), p.
21163
.
94.
Asghar
,
W.
,
Ramachandran
,
P. P.
,
Adewumi
,
A.
,
Noor
,
M. R.
, and
Iqbal
,
S. M.
,
2010
, “
Rapid Nanomanufacturing of Metallic Break Junctions Using Focused Ion Beam Scratching and Electromigration
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030911
.
95.
Ilyas
,
A.
,
Asghar
,
W.
,
Kim
,
Y.-T.
, and
Iqbal
,
S. M.
,
2014
, “
Parallel Recognition of Cancer Cells Using an Addressable Array of Solid-State Micropores
,”
Biosens. Bioelectron.
,
62
, pp.
343
349
.
96.
Mok
,
J.
,
Mindrinos
,
M. N.
,
Davis
,
R. W.
, and
Javanmard
,
M.
,
2014
, “
Digital Microfluidic Assay for Protein Detection
,”
Proc. Natl. Acad. Sci. U.S.A.
,
111
(
6
), pp.
2110
2115
.
97.
Lin
,
Z.
,
Cao
,
X.
,
Xie
,
P.
,
Liu
,
M.
, and
Javanmard
,
M.
,
2015
, “
PicoMolar Level Detection of Protein Biomarkers Based on Electronic Sizing of Bead Aggregates: Theoretical and Experimental Considerations
,”
Biomed Microdev.
,
17
(
6
), p.
119
.
98.
Valera
,
E.
,
Berger
,
J.
,
Hassan
,
U.
,
Ghonge
,
T.
,
Liu
,
J.
,
Rappleye
,
M.
,
Winter
,
J.
,
Abboud
,
D.
,
Haidry
,
Z.
,
Healey
,
R.
,
Hung
,
N. T.
,
Leung
,
N.
,
Mansury
,
N.
,
Hasnain
,
A.
,
Lannon
,
C.
,
Price
,
Z.
,
White
,
K.
, and
Bashir
,
R.
,
2018
, “
A Microfluidic Biochip Platform for Electrical Quantification of Proteins
,”
Lab Chip
,
18
(
10
), pp.
1461
1470
.
You do not currently have access to this content.