An adaptable technique for micropatterning biomaterial scaffolds has enormous implications in controlling cell function and in the development of tissue-engineered (TE) microvasculature. In this paper, we report a technique to embed microscale patterns onto a collagen-glycosaminoglycan (CG) membrane as a first step toward the creation of TE constructs with built-in microvasculature. The CG membranes were fabricated by homogenizing a solution of type-I bovine collagen and chondroitin-6-sulfate in acetic acid and vacuum filtering the solution subsequently. The micropatterning technique consisted of three steps: surface dissolution of base matrix using acetic acid solution, feature resolution by application of uniform pressure, and feature stability by glutaraldehyde cross-linking. Application of the new technique yielded patterns in CG membranes with a spatial resolution on the order of 23μm. We show that such a patterned matrix is conducive to the attachment of bovine aortic endothelial cells. The patterned membranes can be used for the development of complex three-dimensional TE products with built-in flow channels, as templates for topographically directed cell growth or as a model system to study various microvascular disorders where feature scales are important. The new technique is versatile; topographical patterns can be custom made for any predetermined design with high spatial resolution, and the technique itself can be adapted for use with other scaffold materials.

1.
Singhvi
,
R.
,
Kumar
,
A.
,
Lopez
,
G. P.
,
Stephanopoulos
,
G. N.
,
Wang
,
D. I.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
, 1994, “
Engineering Cell Shape and Function
,”
Science
0036-8075,
264
(
5159
), pp.
696
698
.
2.
Chen
,
C. S.
,
Mrksich
,
M.
,
Huang
,
S.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
, 1997, “
Geometric Control of Cell Life and Death
,”
Science
0036-8075,
276
(
5317
), pp.
1425
1428
.
3.
Folch
,
A.
, and
Toner
,
M.
, 2000, “
Microengineering of Cellular Interactions
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
227
256
.
4.
Vernon
,
R. B.
,
Gooden
,
M. D.
,
Lara
,
S. L.
, and
Wight
,
T. N.
, 2005, “
Microgrooved Fibrillar Collagen Membranes as Scaffolds for Cell Support and Alignment
,”
Biomaterials
0142-9612,
26
(
16
), pp.
3131
3140
.
5.
Lu
,
Q.
,
Simionescu
,
A.
, and
Vyavahare
,
N.
, 2005, “
Novel Capillary Channel Fiber Scaffolds for Guided Tissue Engineering
,”
Acta Biomaterialia
,
1
(
6
), pp.
607
614
.
6.
Schmalenberg
,
K. E.
, and
Uhrich
,
K. E.
, 2005, “
Micropatterned Polymer Substrates Control Alignment of Proliferating Schwann Cells to Direct Neuronal Regeneration
,”
Biomaterials
0142-9612,
26
(
12
), pp.
1423
1430
.
7.
Wang
,
Y. C.
, and
Ho
,
C. C.
, 2004, “
Micropatterning of Proteins and Mammalian Cells on Biomaterials
,”
FASEB J.
0892-6638,
18
(
3
), pp.
525
527
.
8.
Shin
,
M.
,
Matsuda
,
K.
,
Ishii
,
O.
,
Terai
,
H.
,
Kaazempur-Mofrad
,
M.
,
Borenstein
,
J.
,
Detmar
,
M.
, and
Vacanti
,
J. P.
, 2004, “
Endothelialized Networks With a Vascular Geometry in Microfabricated Poly(Dimethyl Siloxane)
,”
Biomed. Microdevices
1387-2176,
6
(
4
), pp.
269
278
.
9.
Bettinger
,
C. J.
,
Orrick
,
B.
,
Misra
,
A.
,
Langer
,
R.
, and
Borenstein
,
J. T.
, 2006, “
Microfabrication of Poly(Glycerol-Sebacate) for Contact Guidance Applications
,”
Biomaterials
0142-9612,
27
(
12
), pp.
2558
2565
.
10.
Fidkowski
,
C.
,
Kaazempur-Mofrad
,
M. R.
,
Borenstein
,
J.
,
Vacanti
,
J. P.
,
Langer
,
R.
, and
Wang
,
Y.
, 2005, “
Endothelialized Microvasculature Based on a Biodegradable Elastomer
,”
Tissue Eng.
1076-3279,
11
(
1–2
), pp.
302
309
.
11.
Neumann
,
T.
,
Nicholson
,
B. S.
, and
Sanders
,
J. E.
, 2003, “
Tissue Engineering of Perfused Microvessels
,”
Microvasc. Res.
0026-2862,
66
(
1
), pp.
59
67
.
12.
Norman
,
J. J.
, and
Desai
,
T. A.
, 2005, “
Control of Cellular Organization in Three Dimensions Using a Microfabricated Polydimethylsiloxane-Collagen Composite Tissue Scaffold
,”
Tissue Eng.
1076-3279,
11
(
3–4
), pp.
378
386
.
13.
Tang
,
M. D.
,
Golden
,
A. P.
, and
Tien
,
J.
, 2003, “
Molding of Three-Dimensional Microstructures of Gels
,”
J. Am. Chem. Soc.
0002-7863,
125
(
43
), pp.
12988
12989
.
14.
Yannas
,
I. V.
, and
Burke
,
J. F.
, 1980, “
Design of an Artificial Skin. I. Basic Design Principles
,”
J. Biomed. Mater. Res.
0021-9304,
14
(
1
), pp.
65
81
.
15.
Yannas
,
I. V.
,
Burke
,
J. F.
,
Gordon
,
P. L.
,
Huang
,
C.
, and
Rubenstein
,
R. H.
, 1980, “
Design of an Artificial Skin. II. Control of Chemical Composition
,”
J. Biomed. Mater. Res.
0021-9304,
14
(
2
), pp.
107
132
.
16.
Nimni
,
M. E.
, 1988,
Collagen
,
CRC
,
Boca Raton, FL
.
17.
Charulatha
,
V.
, and
Rajaram
,
A.
, 2003, “
Influence of Different Crosslinking Treatments on the Physical Properties of Collagen Membranes
,”
Biomaterials
0142-9612,
24
(
5
), pp.
759
767
.
18.
Lorenz
,
H.
,
Despont
,
M.
,
Fahrni
,
N.
,
LaBianca
,
N.
,
Renaud
,
P.
, and
Vettiger
,
P.
, 1997, “
Su-8: A Low-Cost Negative Resist for MEMS
,”
J. Micromech. Microeng.
0960-1317,
7
(
3
), pp.
121
124
.
19.
Janakiraman
,
V.
,
Mathur
,
K.
, and
Baskaran
,
H.
, 2007, “
Optimal Planar Flow Network Designs for Tissue Engineered Constructs With Built-in Vasculature
,”
Ann. Biomed. Eng.
0090-6964,
35
(
3
), pp.
337
347
.
20.
Braet
,
F.
,
De Zanger
,
R.
, and
Wisse
,
E.
, 1997, “
Drying Cells for Sem, Afm and Tem by Hexamethyldisilazane: A Study on Hepatic Endothelial Cells
,”
J. Microsc.
0022-2720,
186
(
1
), pp.
84
87
.
21.
Pieper
,
J. S.
,
Hafmans
,
T.
,
Veerkamp
,
J. H.
, and
van Kuppevelt
,
T. H.
, 2000, “
Development of Tailor-Made Collagen-Glycosaminoglycan Matrices: Edc∕Nhs Crosslinking, and Ultrastructural Aspects
,”
Biomaterials
0142-9612,
21
(
6
), pp.
581
593
.
22.
Arcaute
,
K.
,
Mann
,
B. K.
, and
Wicker
,
R. B.
, 2006, “
Stereolithography of Three-Dimensional Bioactive Poly(Ethylene Glycol) Constructs With Encapsulated Cells
,”
Ann. Biomed. Eng.
0090-6964,
34
(
9
), pp.
1429
1441
.
You do not currently have access to this content.