Radiotherapy (RT) enables a selective destruction of tumor cells, although the treatment area is limited to the irradiated volume. Any RT technique comes along with multiple sources of error, which can lead to a deviation of the dose that is applied to the patient. Phantoms—structures that replicate a human and include measurement technology to assess the applied dosage—are used to make such errors observable. Past RT-technologies assumed static tumors. Correspondingly, most existing phantoms comprise only static components. Nowadays, RT is at a transition stage toward techniques which explicitly account for physiological motion. These techniques require phantoms generating such motion. Consequentially, a demand for new kinds of manipulators, which operate with a RT-phantom, has come up and will further increase in the future. Key demands of such manipulators are among others, the generation of full rigid body motion, high acceleration, high stiffness, compactness, little weight, and easy portability. Another indispensable feature is the spatial separation of mechatronic components and phantom structure to ensure human equivalency of the latter. In this work, a new kind of parallel kinematic manipulator (PKM), which is tailored to the requirements of RT-phantom technology, is presented. The PKM consists of low cost standardized mechanical components and sets the target structures, which are located inside a human-equivalent area, into translational and rotational motion in three degrees-of-freedom (DOFs). Only a part of the end-effector is located within the human-equivalent area. All the remaining parts of the PKM are located outside that area. Two versions of the manipulator are presented in detail: their kinematics are derived and their kinetostatic properties are compared. This includes a workspace analysis and the analysis of the transmission behavior in general, meaning the influence of the most important design parameters on the performance. It can be shown that practical differences of both kinematics are negligible, while the modified version provides significant mechanical advantages. In conclusion, a first special purpose manipulator for application in the evolving field of RT-phantom technology is presented. The PKM, which employs a novel kinematic structure, provides higher suitability for its purpose than any other robotic system employed so far for the same purpose.

References

1.
Kutcher
,
G. J.
,
Coia
,
L.
,
Gillin
,
M.
,
Hanson
,
W. F.
,
Leibel
,
S.
,
Morton
,
R. J.
,
Palta
,
J. R.
,
Purdy
,
J. A.
,
Reinstein
,
L. E.
,
Svensson
,
G. K.
,
Weller
,
M.
, and
Wingfield
,
L.
,
1994
, “
Comprehensive QA for Radiation Oncology: Report of AAPM Radiation Therapy Committee Task Group 40
,”
Med. Phys.
,
21
(
4
), pp.
581
618
.
2.
Smith
,
W. L.
, and
Becker
,
N.
,
2009
, “
Time Delays and Margins in Gated Radiotherapy
,”
J. Appl. Clin. Med. Phys.
,
10
(
3
), pp.
140
154
.
3.
Alasti
,
H.
,
Cho
,
Y.-B.
,
Vandermeer
,
A. D.
,
Abbas
,
A.
,
Norrlinger
,
B.
,
Shubbar
,
S.
, and
Bezjak
,
A.
,
2006
, “
A Novel Four-Dimensional Radiotherapy Method for Lung Cancer: Imaging, Treatment Planning and Delivery
,”
Phys. Med. Biol.
,
51
(
12
), pp.
3251
3267
.
4.
Vinogradskiy
,
Y. Y.
,
Balter
,
P.
,
Followill
,
D. S.
,
Alvarez
,
P. E.
,
White
,
R. A.
, and
Starkschall
,
G.
,
2009
, “
Verification of Four-Dimensional Photon Dose Calculations
,”
Med. Phys.
,
36
(
8
), pp.
3438
3447
.
5.
Mutaf
,
Y. D.
,
Antolak
,
J. A.
, and
Brinkmann
,
D. H.
,
2007
, “
The Impact of Temporal Inaccuracies on 4DCT Image Quality
,”
Med. Phys.
,
34
(
5
), pp.
1615
1622
.
6.
Darwesh
,
R. M.
,
Clay
,
D.
,
Hay
,
P. D.
,
Kalirai
,
C.
,
Rassoulian
,
H.
,
Pitiot
,
A.
, and
Perkins
,
A. C.
,
2013
, “
A Three Dimensional Drive System for Use With Fillable Emission Phantoms for SPECT and PET Imaging
,”
Phys. Med.
,
29
(
6
), pp.
695
700
.
7.
Ceberg
,
S.
,
Karlsson
,
A.
,
Gustavsson
,
H.
,
Wittgren
,
L.
, and
Bäck
,
S. Å. J.
,
2008
, “
Verification of Dynamic Radiotherapy: The Potential for 3D Dosimetry Under Respiratory-Like Motion Using Polymer Gel
,”
Phys. Med. Biol.
,
53
(
20
), pp.
N387
N396
.
8.
Dunn
,
L.
,
Kron
,
T.
,
Taylor
,
M. L.
,
Callahan
,
J.
, and
Franich
,
R. D.
,
2012
, “
A Phantom for Testing of 4D-CT for Radiotherapy of Small Lesions
,”
Med. Phys.
,
39
(
9
), pp.
5372
5383
.
9.
Tacke
,
M. B.
,
Nill
,
S.
,
Krauß
,
A.
, and
Oelfke
,
U.
,
2010
, “
Real-Time Tumor Tracking: Automatic Compensation of Target Motion Using the Siemens 160 MLC
,”
Med. Phys.
,
37
(
2
), pp.
753
761
.
10.
Malinowski
,
K. T.
,
Noel
,
C.
,
Lu
,
W.
,
Lechleiter
,
K.
,
Hubenschmidt
,
J.
,
Low
,
D. A.
, and
Parikh
,
P.
,
2007
, “
Development of the 4D Phantom for Patient-Specific, End-to-End Radiation Therapy QA
,”
Proc. SPIE
,
6510
, pp.
1
9
.
11.
Nakayama
,
H.
,
Mizowaki
,
T.
,
Narita
,
Y.
,
Kawada
,
N.
,
Takahashi
,
K.
,
Mihara
,
K.
, and
Hiraoka
,
M.
,
2008
, “
Development of a Three-Dimensionally Movable Phantom System for Dosimetric Verifications
,”
Med. Phys.
,
35
(
5
), pp.
1643
1650
.
12.
Serban
,
M.
,
Heath
,
E.
,
Stroian
,
G.
,
Collins
,
D. L.
, and
Seuntjens
,
J.
,
2008
, “
A Deformable Phantom for 4D Radiotherapy Verification: Design and Image Registration Evaluation
,”
Med. Phys.
,
35
(
3
), pp.
1094
1102
.
13.
Stanley
,
N.
,
Glide-Hurst
,
C.
,
Kim
,
J.
,
Adams
,
J.
,
Li
,
S.
,
Wen
,
N.
,
Chetty
,
I. J.
, and
Zhong
,
H.
,
2013
, “
Using Patient-Specific Phantoms to Evaluate Deformable Image Registration Algorithms for Adaptive Radiation Therapy
,”
J. Appl. Clin. Med. Phys.
,
14
(
6
), pp.
177
194
.
14.
Szegedi
,
M.
,
Rassiah-Szegedi
,
P.
,
Fullerton
,
G.
,
Wang
,
B.
, and
Salter
,
B.
,
2010
, “
A Proto-Type Design of a Real-Tissue Phantom for the Validation of Deformation Algorithms and 4D Dose Calculations
,”
Phys. Med. Biol.
,
55
(
13
), pp.
3685
3699
.
15.
Biederer
,
J.
, and
Heller
,
M.
,
2003
, “
Artificial Thorax for MR Imaging Studies in Porcine Heart-Lung Preparations
,”
Radiology
,
226
(
1
), pp.
250
255
.
16.
Yun
,
J.
,
Yip
,
E.
,
Wachowicz
,
K.
,
Rathee
,
S.
,
Mackenzie
,
M.
,
Robinson
,
D.
, and
Fallone
,
B. G.
,
2012
, “
Evaluation of a Lung Tumor Autocontouring Algorithm for Intrafractional Tumor Tracking Using Low-Field MRI: A Phantom Study
,”
Med. Phys.
,
39
(
3
), pp.
1481
1494
.
17.
Keall
,
P. J.
,
Kini
,
V. R.
,
Vedam
,
S. S.
, and
Mohan
,
R.
,
2001
, “
Motion Adaptive X-Ray Therapy: A Feasibility Study
,”
Phys. Med. Biol.
,
46
(
1
), pp.
1
10
.
18.
Steidl
,
P.
,
Richter
,
D.
,
Schuy
,
C.
,
Schubert
,
E.
,
Haberer
,
T.
,
Durante
,
M.
, and
Bert
,
C.
,
2012
, “
A Breathing Thorax Phantom With Independently Programmable 6D Tumour Motion for Dosimetric Measurements in Radiation Therapy
,”
Phys. Med. Biol.
,
57
(
8
), pp.
2235
2250
.
19.
Haas
,
O. C. L.
,
Paluszczyszyn
,
D.
,
Ruta
,
M.
, and
Skworcow
,
P.
,
2011
, “
Motion Prediction and Control for Patient Motion Compensation in Radiotherapy
,”
IFAC Proc. Vols.
,
18
(
1
), pp.
5985
5990
.
20.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, 2nd ed.,
Kluwer Academic Publishers
,
Boston, MA
.
21.
Arenbeck
,
H.
,
2015
,
Robotische Systeme und Regelungsstrategien für die Radiotherapie bewegter Tumore
, 1st ed.,
Shaker, Aachen
,
Germany
.
22.
Neumann
,
K. E.
,
1988
, “
Robot
,”
U.S. Patent No. 4,732,525 A
.
23.
Siciliano
,
B.
,
1999
, “
The Tricept Robot: Inverse Kinematics, Manipulability Analysis and Closed-Loop Direct Kinematics Algorithm
,”
Robotica
,
17
(
4
), pp.
437
445
.
24.
Zoppi
,
M.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2005
, “
Analytical Kinematics Models and Special Geometries of a Class of 4-DOF Parallel Mechanisms
,”
IEEE Trans. Rob.
,
21
(
6
), pp.
1046
1055
.
25.
Gao
,
F.
, and
Gruver
,
W. A.
,
1997
, “
Performance Evaluation Criteria for Analysis and Design of Robotic Specimens
,”
8th International Conference on Advanced Robotics
(
ICAR
), Monterey, CA, July 7–9, pp.
879
884
.
26.
Liu
,
X.-J.
,
Wang
,
J.
, and
Pritschow
,
G.
,
2006
, “
Performance Atlases and Optimum Design of Planar 5R Symmetrical Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
2
), pp.
119
144
.
27.
Lujan
,
A. E.
,
Balter
,
J. M.
, and
Ten Haken
,
R. K.
,
2003
, “
A Method for Incorporating Organ Motion Due to Breathing Into 3D Dose Calculations in the Liver: Sensitivity to Variations in Motion
,”
Med. Phys.
,
30
(
10
), pp.
2643
2649
.
You do not currently have access to this content.