A novel family of deployable mechanisms (DMs) is presented. Unlike most such devices, which have one degree-of-freedom (DOF), the proposed DM can be deployed and compacted independently in two or three directions. This widens the range of its potential applications, including flexible industrial fixtures and deployable tents. The mechanism's basic deployable unit (DU) is assembled by combining a scissor linkage and a Sarrus linkage. The kinematic properties of these two components and of the combined unit are analyzed. The conditions under which the unit can be maximally compacted and deployed are determined through singularity analysis. New 2DOF DMs are obtained by linking the DUs: each mechanism's shape can be modified in two directions. The relationship between the degree of overconstraint and the number of DUs is derived. The magnification ratio is calculated as a function of link thickness and the number of DUs. The idea of deployment in independent directions is then extended to three dimensions with a family of 3DOF mechanisms. Finally, kinematic simulations are performed to validate the proposed designs and analyses.

References

1.
Pellegrino
,
S.
, and
Guest
,
S. D.
, eds.,
2000
,
IUTAM-IASS Symposium on Deployable Structures: Theory and Applications
, Cambridge, UK, Sept. 6–9,
Kluwer Academic Publishers
,
Dordrecht
.
2.
Hoberman
,
C.
,
1991
, “
Radial Expansion/Retraction Truss Structures
,” U.S. Patent No. 5,024,031.
3.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
7
), pp.
1045
1056
.
4.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.
5.
Feray
,
M.
,
Koray
,
K.
, and
Yenal
,
A.
,
2011
, “
A Review of Planar Scissor Structural Mechanisms: Geometric Principles and Design Methods
,”
Archit. Sci. Rev.
,
54
(
3
), pp.
246
257
.
6.
Gantes
,
C. J.
, and
Konitopoulou
,
E.
,
2004
, “
Geometric Design of Arbitrarily Curved Bi-Stable Deployable Arches With Discrete Joint Size
,”
Int. J. Solids Struct.
,
41
(
20
), pp.
5517
5540
.
7.
Zhao
,
J. S.
,
Chu
,
F. L.
, and
Feng
,
Z. J.
,
2009
, “
The Mechanism Theory and Application of Deployable Structures Based on SLE
,”
Mech. Mach. Theory
,
44
(
2
), pp.
324
335
.
8.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kişisel
,
A. U. Ö.
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
.
9.
Chen
,
Y.
,
2003
, “
Design of Structural Mechanisms
,” Ph.D. thesis, University of Oxford, Oxford, UK.
10.
Baker
,
J. E.
,
2006
, “
On Generating a Class of Foldable Six-Bar Spatial Linkages
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
374
383
.
11.
Ding
,
X. L.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2011
, “
Topology and Kinematic Analysis of Color-Changing Ball
,”
Mech. Mach. Theory
,
46
(
1
), pp.
67
81
.
12.
Chu
,
Z. R.
,
Deng
,
Z. Q.
,
Qi
,
X. Z.
, and
Li
,
B.
,
2014
, “
Modeling and Analysis of a Large Deployable Antenna Structure
,”
Acta Astronaut.
,
95
, pp.
51
60
.
13.
Kwan
,
A. S. K.
,
1995
, “
Parabolic Pantographic Deployable Antenna (PDA)
,”
Int. J. Space Struct.
,
10
(
4
), pp.
195
203
.
14.
Brown
,
M. A.
,
2011
, “
A Deployable Mast for Solar Sails in the Range of 100–1000 m
,”
Adv. Space Res.
,
48
(
11
), pp.
1747
1753
.
15.
Escrig
,
F.
,
Valcarcel
,
J. P.
, and
Sanchez
,
J.
,
1996
, “
Deployable Cover on a Swimming Pool in Seville
,”
J. Int. Assoc. Shell Spatial Struct.
,
37
(
1
), pp.
39
70
.
16.
Hoberman
,
C.
, and
Davis
,
M.
,
2010
, “
Synchronized Four-Bar Linkages
,” U.S. Patent No. 7,644,721.
17.
Hoberman
,
C.
,
2006
, “
Transformation in Architecture and Design
,”
Transportable Environments
, Vol.
3
,
Taylor & Francis
,
Oxon, UK
.
18.
Ahmad
,
Z.
,
Lu
,
S. N.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2013
, “
Conceptual Design of Flexible and Reconfigurable Gripper for Automotive Subassemblies
,”
Proc. World Acad. Sci. Eng. Tech.
,
80
, pp.
211
216
.
19.
Kiper
,
G.
, and
Söylemez
,
E.
,
2009
, “
Regular Polygonal and Regular Spherical Polyhedral Linkages Comprising Bennett Loops
,”
Computational Kinematics
,
Springer
,
Berlin
, pp.
249
256
.
20.
Lu
,
S. N.
,
Zlatanov
,
D.
,
Ding
,
X. L.
,
Molifino
,
R.
, and
Zoppi
,
M.
,
2013
, “
A Novel Deployable Mechanism With Two Decoupled Degrees of Freedom
,”
ASME
Paper No. DETC2013-13187.
21.
Sarrus
,
P. T.
,
1853
, “
Note sur la Transformation des Mouvements Rectilignes Alternatifs, en Mouvements Circulaires; et Reciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
22.
Zlatanov
,
D.
,
Fenton
,
R.
, and
Benhabib
,
B.
,
1995
, “
A Unifying Framework for Classification and Interpretation of Mechanism Singularities
,”
ASME J. Mech. Des.
,
117
(
4
), pp.
566
572
.
You do not currently have access to this content.