This paper presents a method for the dimensional synthesis of fully constrained spatial cable-driven parallel mechanisms (CDPMs), namely, the problem of finding a geometry whose wrench-closure workspace (WCW) contains a prescribed workspace. The proposed method is an extension to spatial CDPMs of a synthesis method previously published by the authors for planar CDPMs. The WCW of CDPMs is the set of poses for which any wrench can be produced at the end-effector by non-negative cable tensions. A sufficient condition is introduced in order to verify whether a given six-dimensional box, i.e., a box covering point-positions and orientations, is fully inside the WCW of a given spatial CDPM. Then, a nonlinear program is formulated, whose optima represent CDPMs that can reach any point in a set of boxes prescribed by the designer. The objective value of this nonlinear program indicates how well the WCW of the resulting CDPM covers the prescribed box, a null value indicating that none of the WCW is covered and a value greater or equal to one indicating that the full prescribed workspace is covered.

References

1.
Kurtz
,
R.
, and
Hayward
,
V.
,
1991
, “
Dexterity Measure for Tendon Actuated Parallel Mechanisms
,”
IEEE International Conference on Advanced Robotics
,
Pisa, Italy
, pp.
1141
1146
.
2.
Gosselin
,
C.
,
Lefrançois
,
S.
, and
Zoso
,
N.
,
2010
, “
Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies
,”
Brain, Body Mach.
,
83
, pp.
311
323
.10.1007/978-3-642-16259-6
3.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I.-M.
,
2006
, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
, pp.
53
69
.10.1016/j.mechmachtheory.2005.04.003
4.
Stump
,
E.
, and
Kumar
,
V.
,
2006
, “
Workspaces of Cable-Actuated Parallel Manipulators
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
159
167
.10.1115/1.2121741
5.
Gouttefarde
,
M.
, and
Gosselin
,
C.
,
2006
, “
Analysis of the Wrench-Closure Workspace of Planar Parallel Cable Driven Mechanisms
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
434
445
.10.1109/TRO.2006.870638
6.
Hay
,
A. M.
, and
Snyman
,
J. A.
,
2005
, “
Optimization of a Planar Tendon-Driven Parallel Manipulator for a Maximal Dextrous Workspace
,”
Eng. Optim.
,
37
(
3
), pp.
217
236
.10.1080/03052150512331328303
7.
Bruckmann
,
T.
,
Mikelsons
,
L.
,
Brandt
,
T.
,
Hiller
,
M.
, and
Schramm
,
D.
,
2009
, “
Design Approaches for Wire Robots
,”
Proceedings of ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conferences
,
San Diego
, Paper No. DETC2009-86720.
8.
Azizian
,
K.
, and
Cardou
,
P.
,
2012
, “
The Dimensional Synthesis of Planar Parallel Cable-Driven Mechanisms Through Convex Relaxations
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031011
.10.1115/1.4006952
9.
Kolev
,
K.
, and
Cremers
,
D.
,
2009
, “
Continuous Ratio Optimization via Convex Relaxation With Applications to Multiview 3D Reconstruction
,”
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Miami, Florida
, pp.
1858
1864
.
10.
Cafieri
S.
,
Lee
J.
, and
Liberti
,
L.
,
2010
, “
On Convex Relaxations of Quadrilinear Terms
,”
J. Global Optim.
,
47
(
4
), pp.
661
685
.10.1007/s10898-009-9484-1
11.
Porta
,
J.
,
Rose
,
L.
, and
Thomas
,
F.
,
2009
, “
A Linear Relaxation Technique for the Position Analysis of Multiloop Linkages
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
225
239
.10.1109/TRO.2008.2012337
12.
Graham
,
T.
,
Roberts
,
R.
, and
Lippitt
,
T.
,
1998
, “
On the Inverse Kinematics, Statics, and Fault Tolerance of Cable-Suspended Robots
,”
J. Rob. Syst.
,
15
(
10
), pp.
581
597
.10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P
13.
Dantzig
,
G.
, and
Thapa
,
M.
,
2003
,
Linear Programming: Theory and Extensions
,
Springer
,
USA
.
14.
Sherali
,
H.
, and
Tuncbilek
,
C. H.
,
1995
, “
A Reformulation-Convexification Approach for Solving Nonconvex Quadratic Programming Problems
,”
J. Global Optimization
,
7
, pp.
1
31
.10.1007/BF01100203
15.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
, and
I-Ming
,
C.
,
2009
, “
Workspace Analysis of Fully Restrained Cable-Driven Manipulators
,”
Rob. Auton. Syst.
,
57
, pp.
901
912
.10.1016/j.robot.2009.06.004
16.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, UK
.
17.
Bazarra
,
M.
,
Sherali
,
H.
, and
Shetty
,
C.
,
2006
,
Nonlinear Programming
,
Wiley Interscience
,
New Jersy
.
18.
Perreault
,
S.
,
Cardou
,
P.
,
Gosselin
,
C. M.
, and
Otis
,
M. J. D.
,
2010
, “
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanism
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031016
.10.1115/1.4001780
You do not currently have access to this content.