Accurate analysis models are critical for effectively utilizing elastomeric joints in miniature compliant mechanisms. This paper presents work toward the characterization and modeling of miniature elastomeric hinges. Characterization was carried out in the form of several experimental bending tests and tension tests on representative hinges in five different configurations. The modeling portion is achieved using a planar pseudo rigid body (PRB) analytical model for these hinges. A simplified planar 3-spring PRB analytical model was developed, consisting of a torsional spring, an axial spring, and another torsional spring in series. These analytical models enable the efficient exploration of large design spaces. The analytical model has been verified to within an accuracy of 3% error in pure bending, and 7% in pure tension, when compared to finite element analysis (FEA) models. Using this analytical model, a complete mechanism—a robotic leg consisting of four rigid links and four compliant hinges—has been analyzed and compared to a corresponding FEA model and a fabricated mechanism.

References

1.
Wood
,
R. J.
,
Avadhanula
,
S.
,
Sahai
,
R.
,
Steltz
,
E.
, and
Fearing
,
R. S.
,
2008
, “
Microrobot Design Using Fiber Reinforced Composites
,”
J. Mech. Des.
,
130
(
5
), p.
052304
.10.1115/1.2885509
2.
Weiss
,
L.
,
Merz
,
R.
,
Prinz
,
F.
,
Neplotnik
,
G.
,
Padmanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Deposition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(
4
), pp.
239
248
.10.1016/S0278-6125(97)89095-4
3.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2011
, “
Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5–8
), pp.
437
452
.10.1007/s00170-011-3301-y
4.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2011
, “
Multi-Material Compliant Mechanisms for Mobile Millirobots
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
, pp.
3169
3174
.
5.
Hoover
,
A.
,
Steltz
,
E.
, and
Fearing
,
R.
,
2008
, “
RoACH: An Autonomous 2.4 g Crawling Hexapod Robot
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
26
33
.
6.
Birkmeyer
,
P.
,
Peterson
,
K.
, and
Fearing
,
R. S.
,
2009
, “
DASH: A Dynamic 16 g Hexapedal Robot
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
2683
2689
.
7.
Kim
,
S.
,
Clark
,
J. E.
, and
Cutkosky
,
M. R.
,
2006
, “
iSprawl: Design and Tuning for High-Speed Autonomous Open-Loop Running
,”
Int. J. Robot. Res.
,
25
(
9
), pp.
903
912
.10.1177/0278364906069150
8.
Noh
,
M.
,
Kim
,
S.-W.
,
An
,
S.
,
Koh
,
J.-S.
, and
Cho
,
K.-J.
,
2012
, “
Flea-Inspired Catapult Mechanism for Miniature Jumping Robots
,”
IEEE Trans. Rob. Autom.
,
28
(
5
), pp.
1007
1018
.10.1109/TRO.2012.2198510
9.
Hines
,
L.
,
Arabagi
, V
.
, and
Sitti
,
M.
,
2012
, “
Shape Memory Polymer-Based Flexure Stiffness Control in a Miniature Flapping-Wing Robot
,”
IEEE Trans. Rob. Autom.
,
28
(
4
), pp.
987
990
.10.1109/TRO.2012.2197313
10.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2011
, “
A Systematic Approach to Designing Multi-Material Miniature Compliant Mechanisms
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, pp.
211
221
.
11.
Frecker
,
M. I.
,
Powell
,
K. M.
, and
Haluck
,
R.
,
2005
, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
990
993
.10.1115/1.2056560
12.
Puangmali
,
P.
,
Liu
,
H.
,
Seneviratne
,
L. D.
,
Dasgupta
,
P.
, and
Althoefer
,
K.
,
2012
, “
Miniature 3-Axis Distal Force Sensor for Minimally Invasive Surgical Palpation
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
646
656
.10.1109/TMECH.2011.2116033
13.
Bachta
,
W.
,
Renaud
,
P.
,
Laroche
,
E.
, and
Gangloff
,
J.
,
2011
, “
The Cardiolock Project: Design of an Active Stabilizer for Cardiac Surgery
,”
ASME J. Mech. Des.
,
133
(
7
), p.
071002
.10.1115/1.4004117
14.
Awtar
,
S.
,
Trutna
,
T. T.
,
Nielsen
,
J. M.
,
Abani
,
R.
, and
Geiger
,
J.
,
2010
, “
FlexDex™: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Control
,”
ASME J. Med. Devices
,
4
(
3
), p.
035003
.10.1115/1.4002234
15.
Solano
,
B.
,
Gallant
,
A.
,
Greggains
,
G. D.
,
Wood
,
D.
, and
Herbert
,
M.
,
2008
, “
Low Voltage Microgripper for Single Cell Manipulation
,”
Adv. Sci. Technol.
,
57
, pp.
67
72
.10.4028/www.scientific.net/AST.57.67
16.
Yu
,
J.
,
Bi
,
S.
,
Zong
,
G.
,
Dai
,
J.
, and
Liu
,
X.-J.
,
2006
, “
Mobility Characteristics of a Flexure-Based Compliant Manipulator With Three Legs
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
1076
1081
.
17.
Yong
,
Y. K.
,
Aphale
,
S.
, and
Reza Moheimani
,
S.
,
2009
, “
Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning
,”
IEEE Trans. Nanotechnol.
,
8
(
1
), pp.
46
54
.10.1109/TNANO.2008.2005829
18.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Design and Analysis of a Totally Decoupled Flexure-Based XY Parallel Micromanipulator
,”
IEEE Trans. Rob. Autom.
,
25
(
3
), pp.
645
657
.10.1109/TRO.2009.2014130
19.
Mohd Zubir
,
M. N.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Precis. Eng.
,
33
(
4
), pp.
362
370
.10.1016/j.precisioneng.2008.10.003
20.
Jensen
,
K. A.
,
Lusk
,
C. P.
, and
Howell
,
L. L.
,
2006
, “
An XYZ Micromanipulator With Three Translational Degrees of Freedom
,”
Robotica
,
24
(
3
), pp.
305
314
.10.1017/S0263574705002134
21.
Todd
,
B.
,
Jensen
,
B. D.
,
Schultz
,
S. M.
, and
Hawkins
,
A. R.
,
2010
, “
Design and Testing of a Thin-Flexure Bistable Mechanism Suitable for Stamping From Metal Sheets
,”
ASME J. Mech. Des
,
132
(
7
), p.
071011
.10.1115/1.4001876
22.
Su
,
H.-J.
, and
McCarthy
,
J. M.
,
2007
, “
Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy
,”
ASME J. Mech. Des.
,
129
(
10
), pp.
1094
1098
.10.1115/1.2757192
23.
Chen
,
G.
,
Gou
,
Y.
, and
Zhang
,
A.
,
2011
, “
Synthesis of Compliant Multistable Mechanisms Through Use of a Single Bistable Mechanism
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081007
.10.1115/1.4004543
24.
Mavanthoor
,
A.
, and
Midha
,
A.
,
2006
, “
Bistable Compliant Four-Bar Mechanisms With a Single Torsional Spring
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE)
, Vol. 2006, pp.
151
157
.
25.
Park
,
H. S.
, and
Sitti
,
M.
,
2009
, “
Compliant Footpad Design Analysis for a Bio-Inspired Quadruped Amphibious Robot
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
), pp.
645
651
.
26.
Asbeck
,
A. T.
, and
Cutkosky
,
M. R.
,
2012
, “
Designing Compliant Spine Mechanisms for Climbing
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031007
.10.1115/1.40066591
27.
Berselli
,
G.
,
Vertechy
,
R.
,
Vassura
,
G.
, and
Parenti-Castelli
, V
.
,
2011
, “
Optimal Synthesis of Conically Shaped Dielectric Elastomer Linear Actuators: Design Methodology and Experimental Validation
,”
IEEE/ASME Trans. Mechatron.
,
16
(
1
), pp.
67
79
.10.1109/TMECH.2010.2090664
28.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2007
, “
On the Performance Mechanisms of Dielectric Elastomer Actuators
,”
Sens. Actuators, A
,
137
(
1
), pp.
96
109
.10.1016/j.sna.2007.01.017
29.
Cappelleri
,
D. J.
,
Krishnan
,
G.
,
Kim
,
C.
,
Kumar
, V
.
, and
Kota
,
S.
,
2010
, “
Toward the Design of a Decoupled, Two-Dimensional, Vision-Based μN Force Sensor
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021010
.10.1115/1.4001093
30.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Kinematic Synthesis of Planar, Shape-Changing Compliant Mechanisms Using Pseudo-Rigid-Body Models
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE
)
.
31.
Hoetmer
,
K.
,
Woo
,
G.
,
Kim
,
C.
, and
Herder
,
J.
,
2010
, “
Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms: Design and Testing
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041007
.10.1115/1.4002247
32.
Howell
,
L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
33.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3R Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
.10.1115/1.3046148
34.
Howell
,
L. L.
,
DiBiasio
,
C. M.
,
Cullinan
,
M. A.
,
Panas
,
R. M.
, and
Culpepper
,
M. L.
,
2010
, “
A Pseudo-Rigid-Body Model for Large Deflections of Fixed-Clamped Carbon Nanotubes
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
034501
.10.1115/1.4001726
35.
Chen
,
G.
,
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2009
, “
Fully Compliant Double Tensural Tristable Micromechanisms (DTTM)
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025011
.10.1088/0960-1317/19/2/025011
36.
Hetrick
,
J. A.
, and
Kota
,
S.
,
1999
, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
229
–234.10.1115/1.2829448
37.
Baek
,
S. S.
,
Ma
,
K. Y.
, and
Fearing
,
R. S.
,
2009
, “
Efficient Resonant Drive of Flapping-Wing Robots
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
2854
2860
.
38.
Sahai
,
R.
,
Galloway
,
K. C.
, and
Wood
,
R. J.
,
2013
, “
Elastic Element Integration for Improved Flapping-Wing Micro Air Vehicle Performance
,”
IEEE Trans. Rob. Autom.
,
29
(
1
), pp.
32
41
.10.1109/TRO.2012.2218936
39.
Kim
,
S.-W.
,
Koh
,
J.-S.
,
Cho
,
M.
, and
Cho
,
K.-J.
,
2010
, “
Towards a Bio-Mimetic Flytrap Robot Based on a Snap-Through Mechanism
,”
Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
, pp.
534
539
.
40.
Arruda
,
E. M.
, and
Boyce
,
M. C.
,
1993
, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
,
41
(
2
), pp.
389
412
.10.1016/0022-5096(93)90013-6
41.
Gerratt
,
A. P.
,
Penskiy
, I
.
, and
Bergbreiter
,
S.
,
2013
, “
In Situ Characterization of PDMS in SOI-MEMS
,”
J. Micromech. Microeng.
,
23
(
4
)
, p.
045003
.10.1088/0960-1317/23/4/045003
You do not currently have access to this content.