Two new designs for gravity compensated modular robotic systems are presented and analyzed. The gravity compensation relies on using zero-free-length springs approximated by a cable and pulley system. Simple yet powerful parallel four-bar modules enable the low-profile self-contained modules with sequential gravity compensation using the spring method for motion in a vertical plane. A second module that is formed as a parallel six-bar mechanism adds a horizontal motion to the previous system that also yields a complete decoupling of position and orientation of the distal end of a serial chain. Additionally, we introduce the concept of vanishing effort where as the number of modules that comprise an articulated serial chain increases, the actuation authority required at any joint reduces. Essentially, this results in a method for distributing actuation along the length of an articulated chain. Prototypes were designed and constructed validating the analysis and accomplishing the functions of a general serial-type manipulator arm.

References

1.
Shen
,
W.-M.
,
Krivokon
,
M.
,
Chiu
,
H.
,
Everist
,
J.
,
Rubenstein
,
M.
, and
Venkatesh
,
J.
,
2006
, “
Multimode Locomotion via SuperBot Reconfigurable Robots
,”
Auton. Rob.
,
20
, pp.
165
177
.10.1007/s10514-006-6475-7
2.
Castano
,
A.
,
Behar
,
A.
, and
Will
,
P.
,
2002
, “
The Conro Modules for Reconfigurable Robots
,”
Mechatronics, IEEE/ASME Transactions
,
7
(4), pp.
403
409
.10.1109/TMECH.2002.806233
3.
Jorgensen
,
M.
,
Ostergaard
,
E.
, and
Lund
,
H.
,
2004
, “
Modular ATRON: Modules for a Self-Reconfigurable Robot
,”
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004
, Vol.
2
, pp.
2068
2073
.
4.
Yim
,
M.
,
Shen
,
W.-M.
,
Salemi
,
B.
,
Rus
,
D.
,
Moll
,
M.
,
Lipson
,
H.
,
Klavins
,
E.
, and
Chirikjian
,
G.
,
2007
, “
Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics]
,”
IEEE Rob. Autom. Mag.
,
14
(
1
), pp.
43
52
.10.1109/MRA.2007.339623
5.
Liu
,
G.
,
Liu
,
Y.
, and
Goldenberg
,
A.
,
2011
, “
Design, Analysis, and Control of a Spring-Assisted Modular and Reconfigurable Robot
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
695
706
.10.1109/TMECH.2010.2050895
6.
Wyrobek
,
K.
,
Berger
,
E.
,
Van der Loos
,
H.
, and
Salisbury
,
J.
,
2008
, “
Towards a Personal Robotics Development Platform: Rationale and Design of an Intrinsically Safe Personal Robot
,”
IEEE International Conference on Robotics and Automation, ICRA 2008
, pp.
2165
2170
.
7.
Kazerooni
,
H.
,
1989
, “
Statically Balanced Direct Drive Manipulator
,”
Robotica
,
7
(
02
), pp.
143
149
.10.1017/S0263574700005452
8.
Moore
,
B.
,
Schico
,
J.
, and
Gosselin
,
C.
,
2007
, “
Determination of the Complete Set of Statically Balanced Planar Four-Bar Mechanisms
,” Report No. SFB F013 1, Universite Laval, Quebec, Quebec, QC.
9.
Russo
,
A.
,
Sinatra
,
R.
, and
Xi
,
F.
,
2005
, “
Static Balancing of Parallel Robots
,”
Mech. Mach. Theory
,
40
(
2
), pp.
191
202
.10.1016/j.mechmachtheory.2004.06.011
10.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2006
, “
On the Design of Reactionless 3-DOF Planar Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
70
82
.10.1016/j.mechmachtheory.2005.04.005
11.
Nathan
,
R.
,
1985
, “
A Constant Force Generation Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
,
107
(
4
), pp.
508
512
.10.1115/1.3260755
12.
Ulrich
,
N.
, and
Kumar
,
V.
,
1991
, “
Passive Mechanical Gravity Compensation for Robot Manipulators
,”
Proceedings of 1991 IEEE International Conference on Robotics and Automation
, pp.
1536
1541
.
13.
Agrawal
,
S. K.
, and
Fattah
,
A.
,
2004
, “
Gravity-Balancing of Spatial Robotic Manipulators
,” 11th National Conference on Machines and Mechanisms (NaCoMM-2003),
Mech. Mach. Theory
,
39
(
12
), pp.
1331
1344
.10.1016/j.mechmachtheory.2004.05.019
14.
Wisse
,
B.
,
van Dorsser
,
W.
,
Barents
,
R.
, and
Herder
,
J.
,
2007
, “
Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept
,”
IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007
, pp.
742
750
.
15.
van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2007
, “
Gravity-Balanced Arm Support With Energy-Free Adjustment
,”
ASME J. Med. Devices
,
1
(
2
), pp.
151
158
.10.1115/1.2736400
16.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2009
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME Conf. Proc.
,
2009
(
49040
), pp.
689
700
10.1115/1.4004101.
17.
van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2007
, “
Energy-Free Adjustment of Gravity Equilibrators Using the Possibility of Adjusting the Spring Stiffness
,”
IEEE 10th International Conference on Rehabilitation Robotics, ICORR 2007
, pp.
1839
1846
.
18.
Monsarrat
,
B.
, and
Gosselin
,
C.
,
2003
, “
Workspace Analysis and Optimal Design of a 3-Leg 6-DOF Parallel Platform Mechanism
,”
IEEE Trans. Rob. Autom.
,
19
(
6
), pp.
954
966
.10.1109/TRA.2003.819603
19.
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spherical 3-DOF Parallel Mechanisms and Manipulators
,”
Int. J. Rob. Res.
,
18
(
8
), pp.
819
829
.10.1177/02783649922066583
20.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.10.1016/S0094-114X(98)00031-7
21.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2010
, “
Design of a Gravity-Balanced General Spatial Serial-Type Manipulator
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031003
.10.1115/1.4001816
22.
Lin
,
P.-Y.
,
2012
, “
Design of Statically Balanced Spatial Mechanisms With Spring Suspensions
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021015
.10.1115/1.4006522
23.
Gosselin
,
C. M.
,
2006
, “
Adaptive Robotic Mechanical Systems: A Design Paradigm
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
192
198
.10.1115/1.2120781
24.
Agrawal
,
S.
,
Banala
,
S.
, and
Fattah
,
A.
,
2006
, “
A Gravity Balancing Passive Exoskeleton for the Human Leg
,”
Proceedings of Robotics: Science and Systems
.
25.
Fitch
,
R.
, and
Butler
,
Z.
,
2008
, “
Million Module March: Scalable Locomotion for Large Self-Reconfiguring Robots
,”
Int. J. Rob. Res.
,
27
(
3-4
), pp.
331
343
.10.1177/0278364907085097
26.
Park
,
M.
,
Chitta
,
S.
,
Teichman
,
A.
, and
Yim
,
M.
,
2008
, “
Automatic Configuration Recognition Methods in Modular Robots
,”
Int. J. Rob. Res.
,
27
(
3-4
), pp.
403
421
.10.1177/0278364907089350
27.
Soper
,
R.
,
Mook
,
D.
, and
Reinholz
,
C.
,
1997
, “
Vibration of Nearly Perfect Spring Equilibrators
,”
Proceedings of ASME DETC
, Paper No. DAC-3768.
28.
Herder
,
J. L.
,
2001
, “
Energy-Free Systems: Theory, Conception, and Design of Statically Balanced Spring Mechanisms
,” Ph.D. thesis, TU Delft, Delft University of Technology, The Netherlands.
29.
Sastra
,
J.
,
Chitta
,
S.
, and
Yim
,
M.
,
2009
, “
Dynamic Rolling for a Modular Loop Robot
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
758
773
.10.1177/0278364908099463
30.
White
,
P.
,
2011
, “
Miniaturization Methods for Modular Robotics: External Actuation and Dielectric Elastomer Actuation
,” Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
31.
Christensen
,
D.
,
Campbell
,
J.
, and
Stoy
,
K.
,
2010
, “
Anatomy-Based Organization of Morphology and Control in Self-Reconfigurable Modular Robots
,”
Neural Comput. Appl.
,
19
, pp.
787
805
.10.1007/s00521-010-0387-3
32.
Castano
,
A.
, and
Will
,
P.
,
2002
.
A Polymorphic Robot Team
,
A K Peters/CRC Press
,
Boca Raton, FL
, pp.
139
160
.
33.
Kutzer
,
M. D. M.
,
Moses
,
M. S.
,
Brown
,
C. Y.
,
Scheidt
,
D. H.
,
Chirikjian
,
G. S.
, and
Armand
,
M.
,
2010
, “
Design of a New Independently-Mobile Reconfigurable Modular Robot
,”
2010 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
2758
2764
.
34.
Zykov
,
V.
,
Chan
,
A.
, and
Lipson
,
H.
,
2007
, “
Molecubes: An Open-Source Modular Robotics Kit
,” IROS-2007 Self-Reconfigurable Robotics Workshop.
35.
Murata
,
S.
,
Yoshida
,
E.
,
Kamimura
,
A.
,
Kurokawa
,
H.
,
Tomita
,
K.
, and
Kokaji
,
S.
,
2002
, “
M-TRAN: Self-Reconfigurable Modular Robotic System
,”
IEEE/ASME Trans. Mechatron.
,
7
(
4
), pp.
431
441
.10.1109/TMECH.2002.806220
36.
Kurokawa
,
H.
,
Kamimura
,
A.
,
Yoshida
,
E.
,
Tomita
,
K.
,
Murata
,
S.
, and
Kokaji
,
S.
,
2002
, “
Self-Reconfigurable Modular Robot (M-TRAN) and Its Motion Design
,”
7th International Conference on Control, Automation, Robotics and Vision
, ICARCV 2002, Vol.
1
, pp.
51
56
.
37.
Yim
,
M.
,
Homans
,
S.
, and
Roufas
,
K.
,
2001
, “
Climbing With Snake-Like Robots
,” IFAC Workshop on Mobile Robot Technology, pp.
21
22
.
38.
Yim
,
M.
,
Duff
,
D.
, and
Roufas
,
K.
,
2000
, “
PolyBot: A Modular Reconfigurable Robot
,”
Proceedings of IEEE International Conference on Robotics and Automation, ICRA’00
, Vol.
1
, pp.
514
520
.
39.
Yim
,
M.
,
Roufas
,
K.
,
Duff
,
D.
,
Zhang
,
Y.
,
Eldershaw
,
C.
, and
Homans
,
S.
,
2003
, “
Modular Reconfigurable Robots in Space Applications
,”
Auton. Rob.
,
14
, pp.
225
237
.10.1023/A:1022287820808
40.
Salemi
,
B.
,
Moll
,
M.
, and
Shen
,
W.
,
2007
, “
SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE
, pp.
3636
3641
.
You do not currently have access to this content.