Flexure mechanism synthesis, however, is still a comparably difficult task. This paper aims at exploring a simple but systematic type synthesis methodology for general flexure mechanisms. The applied mathematical tool is reciprocal screw system theory in geometric form, and the proposed approach is an improvement of freedom and constraint topology (FACT), which is based on the FACT approach, combining with other methods including equivalent compliance mapping, set operation on building blocks, etc. As a result, it enables the type synthesis of flexure mechanisms simple, complete, and effective. What is more significant is that the proposed approach makes the unified type synthesis of both constraint-based and kinematics-based flexure mechanisms available. That is also the new contribution to the flexure de-sign.

References

1.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Constant-Based Design of Parallel Kinematic XY Flexure Mechanisms
,”
ASME J. Mech. Des.
,
129
, pp.
816
830
.
2.
Smith
,
S. T.
, 2000,
Flexures; Elements of Elastic Mechanisms
,
Gordon and Breach Science Publishers
,
New York
.
3.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
, 2001,
Mechanism Design, Analysis and Synthesis
,
Prentice-Hall
,
New Jersey
.
4.
Hudgens
,
J. C.
, and
Tesar
,
D.
1988, “
A Fully-Parallel 6-DOF Micromanipulator: Kinematic Analysis and Dynamic Model
,” ASME Mechanical Conference, DE-15(3), pp.
29
37
.
5.
Zhang
,
W. J.
,
Zou
,
J.
,
Watson
,
L. G.
,
Zhao1
,
W.
,
Zong
,
G. H.
, and
Bi
,
S. S.
, 2002, “
The Constant-Jacobian Method for Kinematics of a Three-DOF Planar Micro-Motion Stage
,”
J. Rob. Syst.
,
19
(
2
), pp.
63
72
.
6.
Koseki
,
Y.
,
Tanikawa
,
T.
,
Koyachi
,
N.
, and
Arai
,
T.
, 2000, “
Kinematic Analysis of Translational 3-DOF Micro Parallel Mechanism Using Matrix Method
,” Proceedings of the IEEE/RSJ IROS 2000, pp.
786
792
.
7.
Awtar
,
S.
, and
Slocum
,
A. H.
, 2007, “
Characteristics of Beam-Based Flexure Modules
,”
ASME J. Mech. Des.
,
129
, pp.
625
638
.
8.
Dong
,
W.
,
Sun
,
L. N.
,
Du
,
Z. J.
, 2008, “
Stiffness Research on a High-Precision, Large-Workspace Parallel Mechanism With Compliant Joints
,”
Precis. Eng.
,
32
(
2
), pp.
222
231
.
9.
Bi
,
S. S.
, and
Zong
,
G. H.
, 1997, “
Accuracy Analysis of the Serial-Parallel Micromotion Manipulator
,”
IEEE International Conference on System
,
Man and Cybernetics
,
Orlando, FL
, pp.
2258
2263
.
10.
Ryu
,
J. W.
,
Gweon
,
D.
,
Moon
, and
K. S.
1997, “
Optimal Design of a Flexure Hinge Based XYφ Wafer Stage
,”
Precis. Eng.
,
21
(
1
), pp.
18
28
.
11.
Kim
,
D. M.
,
Kang
,
D. W.
,
Shim
,
J. Y.
,
Song
,
I. E.
, and
Gweon
,
D. G.
, 2005, “
Optimal Design of a Flexure Hinge-Based XYZ Atomic Force Microscopy Scanner for Minimizing Abbe Errors
,”
Rev. Sci. Instrum.
,
76
(
7
), p.
073706
.
12.
Yu
,
J. J.
,
Bi
,
S. S.
, and
Zong
,
G. H.
, 2004, “
The Dynamic Characteristic-Based Optimal Design of a Fully Compliant Mechanism
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
, Apr. 1–4,
Tianjin, China
, pp.
1416
1421
.
13.
Howell
,
L. L.
, and
Midha
,
A.
, 1995, “
Parametric Deflection Approximations for End-Lloaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
.
14.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley Interscience
,
New York
.
15.
Ananthasuresh
,
G. K.
, and
Kota
,
S.
, 1995, “
Designing Compliant Mechanisms
,”
Mech. Eng.
,
117
(
11
), pp.
93
96
.
16.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
.
17.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
229
234
.
18.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
, 2005, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.
19.
Zhou
,
H.
, and Ting, K.-L., 2005, “
Topological Synthesis of Compliant Mechanisms Using Spanning Tree Theory
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
753
759
.
20.
Hull
,
P. V.
, and
Canfield
,
S.
, 2006, “
Optimal Synthesis of Compliant Mechanisms Using Subdivision and Commercial FEA
,”
ASME J. Mech. Des.
,
128
(
2
), pp.
337
348
.
21.
Paros
,
J. M.
, and
Weisbord
,
L.
, 1965, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
(
27
),
151
156
.
22.
Moon
,
Y. M.
,
Trease
,
B.
, and
Kota
,
S.
, 2002, “
Design of Large Displacement Compliant Joints
,” Proceedings of DETC 2002, 27th Biannual Mechanisms and Robotics Conference, DETC2002/MECH–34207.
23.
Culpepper
,
M. L.
,
Anderson
,
G.
, and
Petri
,
P.
, 2002, “
HexFlex: A Planar Mechanism for Six-Axis Manipulation and Alignment
,” Proceedings of the 17th Annual ASPE Meeting, November.
24.
Bacher
,
J. P.
,
Bottinelli
,
S.
,
Breguet
,
J. M.
, and
Clavel
,
R.
2001, “
Delta3: Design and Control of a Flexure Hinges Mechanism
,”
Proc. SPIE
,
4568
, pp.
135
142
.
25.
Blanding
,
D. L.
, 1999,
Exact Constraint: Machine Design Using Kinematic Principle
,
ASME Press
,
New York
.
26.
Hale
,
L. C.
, 1999, “
Principles and Techniques for Designing Precision Machines
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
27.
Slocum
,
A. H.
, 1992,
Precision Machine Design
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
28.
Hunt
,
K. H.
, 1983, “
Structural Kinematics of In-Parallel-Actuated Robot-Arms
,”
ASME J. Mech., Transm. Autom. Des.
,
105
, pp.
705
712
.
29.
Tsai
,
L.-W.
, 2001,
Mechanism Design: Enumeration of Kinematic Structures According to Function
,
CRC Press
,
Boca Raton
, FL.
30.
Yan
,
H. S.
, 1998,
Creative Design of Mechanical Devices
,
Springer-Verlag
,
Singapore
.
31.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
32.
Angeles
,
J.
, 2004. “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
617
623
.
33.
Huang
,
Z.
, and
Li
,
Q. C.
, 2003, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint Synthesis Method
,”
Int. J. Robot. Res.
,
22
(
1
), pp.
59
79
.
34.
Kong
,
X. W.
, and
Gosselin
,
C.
, 2007,
Type Synthesis of Parallel Mechanisms
,
Springer-Verlag
, Berlin Heidelberg,
Germany
.
35.
Hopkins
,
J. B.
, and
Culpepper
M. L.
, 2010, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure Mechanism Concepts via Freedom and Constraint Topology (FACT). Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.
36.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2010, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure Mechanism Concepts via Freedom and Constraint Topology (FACT). Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.
37.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
, 2009, “
Synthesis of Multi-Axis Serial Flexure Mechanisms
,”
2009 ASPE Annual Meeting
,
Las Vegas
,
p.
2870
.
38.
Su
,
H.-J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
, 2009, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
J. Mech. Rob.
,
1
(
4
), p.
041009
.
39.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University Press
,
Cambridge
.
40.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
A Classification of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
581
584
.
41.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
580
.
42.
Murray
,
R.
,
Li
,
Z. X.
, and
Sastry
,
S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Orlando
, FL.
43.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems—I, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.
44.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems—II, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
11
27
.
45.
Rico
,
J. M.
, and
Duffy
,
J.
, 1992, “
Classification of Screw Systems—I: One- and Two-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
459
470
.
46.
Rico
,
J. M.
, and
Duffy
,
J.
, 1992, “
Classification of Screw Systems—II: Three-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
471
490
.
47.
Rico
,
J. M.
, and
Duffy
,
J.
, 1992, “
Orthogonal Spaces and Screw Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
451
458
.
48.
Selig
,
J. M.
, 2000,
Geometry Foundations in Robotics
,
World Scientific
,
Singapore
.
49.
Meng
,
J.
,
Liu
,
G. F.
, and
Li
,
Z. X.
, 2005, “
A Geometric Theory for Synthesis and Analysis of Sub-6 DoF Parallel Manipulators
,”
ICRA, Barcelona
,
Spain
, pp.
2938
2943
.
50.
Selig
,
J. M.
, and
Ding
,
X. L.
, 2001, “
A Screw Theory of Static Beams
,”
Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Maui, HI
, pp.
312
317
.
51.
Selig
,
J. M.
, and
Ding
,
X. L.
, 2009, “
A Screw Theory of Timoshenko Beams
,”
ASME J. Appl. Mech.
,
76
(
3
), pp.
1
7
.
52.
Dong
,
W.
,
Du
,
Z. J.
, and
Sun
,
L. N.
, 2005, “
Conceptual Design and Kinematics Modeling of a Wide-Range Flexure Hinge-Based Parallel Manipulator
,” ICRA 2005, pp.
4031
4036
.
53.
Cannon
,
J. R.
, and
Howell
,
L. L.
, 2005, “
A Compliant Contact-Aided Revolute Joint
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1273
1293
.
54.
Pham
,
P.
, 2009, “
Design of Hybrid-Kinematic Mechanisms for Machine Tools
,” Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
55.
Choi
,
K. B.
, and
Lee
,
J. J.
, 2005, “
Passive Compliant Wafer Stage for Single-Step Nano-Imprint Lithography
,”
Rev. Sci. Instrum.
,
76
, p.
075106
56.
Canfield
,
S. L.
, and
Beard
,
J.
, 2002, “
Development of a Spatial Compliant Manipulator
,”
Int. J. Rob. Autom.
,
17
(
1
), pp.
63
71
.
57.
Yao
,
Q.
,
Dong
,
J.
, and
Ferreira
,
P. M.
, 2007, “
Design, Analysis, Fabrication and Testing of a Parallel-Kinematic Micropositioning XY Stage
,”
Int. Mach. Tools Manuf.
,
47
(
6
), pp.
946
961
.
58.
Chang
,
S.
,
Tseng
,
C.
, and
Chien
,
H.
, 1999, “
An Ultra-Precision XYθZ Piezo-Micropositioner—Part I: Design and Analysis
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
46
(
4
), pp.
897
905
.
59.
Callegari
,
M.
,
Cammarata
,
A.
,
Gabrielli
,
A.
, Ruggiu, and M. Sinatra, R., 2009, “
Analysis and Design of a Spherical Micromechanism With Flexure Hinges
,”
ASME J. Mech. Des.
,
131
, p.
051003
.
60.
Pernette
,
E.
,
Henein
,
S.
,
Magnani
,
I.
, and
Clavel
,
R.
1997, “
Design of Parallel Robots in Microrobots
,”
Robotica
,
15
, pp.
417
420
.
61.
Hao
,
G. B.
, and
Kong
,
X. W.
, 2009, “
A 3-DOF Translational Compliant Parallel Manipulator Based on Flexure Motion
,” ASME/DETC 2009, Aug. 30–Sep. 2, 2009, San Diego, CA, DETC
2009
86075
.
You do not currently have access to this content.