This paper deals with the forward displacement analysis and singularity analysis of a special 2-DOF 5R spherical parallel manipulator, in which the angle between the axes of any two adjacent revolute joints is a right angle. An alternative formulation of the kinematic equations of the 5R spherical parallel manipulator is proposed. A formula is then derived to produce directly the unique current solution to the forward displacement analysis of the 5R spherical parallel manipulator. It will also be addressed to keep the spherical parallel manipulator in the same working mode and assembly mode by simply restraining the range of an input angle. Unlike other parallel manipulators, the 5R spherical parallel manipulator always undergoes self-motion in a type-II singular configuration, and the 3R leg of the 5R spherical parallel manipulator also always undergoes self-motion in a type-I singular configuration.

1.
Gosselin
,
C.
,
St-Pierre
,
E.
, and
Gagné
,
M.
, 1996, “
On the Development of the Agile Eye: Mechanical Design, Control Issues and Experimentation
,”
IEEE Rob. Autom. Mag.
1070-9932,
3
(
4
), pp.
29
37
.
2.
Gosselin
,
C.
, and
Caron
,
F.
, 1999, “
Two-Degree-of-Freedom Spherical Orienting Device
,” U.S. Patent No. 5,966,991.
3.
Ouerfelli
,
M.
, and
Kumar
,
V.
, 1994, “
Optimization of a Spherical Five-Bar Parallel Drive Linkage
,”
ASME J. Mech. Des.
0161-8458,
116
(
11
), pp.
166
173
.
4.
Caron
,
F.
, 1997, “
Analyse et Conception d’un Manipulateur Paralléle Sphérique à deux Degrés de Liberté Pour L’orientation d’une Caméra
,” M.Sc. thesis, Université Laval, Québec.
5.
Cervantes-Sánchez
,
J. J.
,
Hernández-Rodríguez
,
J. C.
, and
González-Galván
,
E. J.
, 2004, “
On the 5R Spherical, Symmetric Manipulator: Workspace and Singularity Characterization
,”
Mech. Mach. Theory
0094-114X,
39
(
4
), pp.
409
429
.
6.
Lum
,
M. J. H.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
, 2006, “
Optimization of Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
0018-9294,
53
(
7
), pp.
1440
1445
.
7.
Samson
,
E.
,
Laurendeau
,
D.
,
Parizeau
,
M.
,
Comtois
,
S.
,
Allan
,
J. -F.
, and
Gosselin
,
C.
, 2006, “
The Agile Stereo Pair for Active Vision
,”
Mach. Vision Appl.
0932-8092,
17
(
1
), pp.
32
50
.
8.
Zhang
,
L. -J.
,
Niu
,
Y. W.
,
Li
,
Y. Q.
, and
Huang
,
Z.
, 2006, “
Analysis of the Workspace of 2-DOF Spherical 5R Parallel Manipulator
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
, Orlando, FL, pp.
1123
1128
.
9.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2004, “
A Novel Fully Decoupled Two-Degrees-of-Freedom Parallel Wrist
,”
Int. J. Robot. Res.
0278-3649,
23
(
6
), pp.
661
667
.
10.
Gogu
,
G.
, 2005, “
Fully-Isotropic Over-Constrained Parallel Wrists With Two Degrees of Freedom
,”
Proceedings of 2005 IEEE International Conference on Robotics and Automation
, Barcelona, Spain, pp.
4025
4030
.
11.
Vertechy
,
R.
, and
Parenti-Castelli
,
V.
, 2006,
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Roth
, eds., pp.
385
394
.
12.
Herv
,
J.
, 2006, “
Uncoupled Actuation of Pan-Tilt Wrists
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
1
), pp.
56
64
.
13.
Ruggiu
,
M.
, 2010, “
Kinematic and Dynamic Analysis of a Two-Degree-of-Freedom Spherical Wrist
,”
ASME J. Mech. Rob.
1942-4302,
2
, p.
031006
.
14.
Merlet
,
J. P.
, 2000, “
On the Separability of the Solutions of the Direct Kinematics of a Special Class of Planar 3-RPR Parallel Manipulator
,”
ASME
Paper No. DETC2000/MECH-14103.
15.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2000, “
Determination of the Uniqueness Domains of 3-RPR Planar Parallel Manipulators With Similar Platforms
,”
ASME
Paper No. DETC2000/MECH-14094.
16.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2009, “
Forward Displacement Analysis of a Quadratic Planar Parallel Manipulator: 3-RPR Parallel Manipulator With Similar Triangular Platforms
,”
ASME J. Mech. Rob.
1942-4302,
1
, p.
024501
.
17.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2008, “
Forward Displacement Analysis of a Quadratic 3T1R Parallel Manipulator: The 4-DOF Quadrupteron
,”
Proceedings of the Second International Workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators
, Montpellier, France, Sept. 21– 22, pp.
31
39
.
18.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2010, “
A Formula That Produces a Unique Solution to the Forward Displacement Analysis of a Quadratic Spherical Parallel Manipulator: The Agile Eye
,”
ASME J. Mech. Rob.
1942-4302,
2
, p.
044051
.
19.
Chablat
,
D.
,
Wenger
,
P.
, and
Bonev
,
I. A.
, 2006,
Advances in Robot Kinematics
,
J.
Lenarčič
and
B.
Roth
, eds.,
Springer
,
The Netherlands
, pp.
221
228
.
20.
Kong
,
X.
, 2008,
Advances in Robot Kinematics
, edited by
J.
Lenarčič
and
P.
Wenger
,
Springer
,
New York
, pp.
29
38
.
21.
Nielsen
,
J.
, and
Roth
,
B.
, 1998, “
Formulation and Solution for the Direct and Inverse Kinematics Problems for Mechanisms and Mechatronics Systems
,”
Computational Methods in Mechanical Systems
(
NATO ASI Series F: Computer and Systems Sciences
),
Springer
,
New York
,
J.
Angeles
and
E.
Zakhariev
, eds., Vol.
161
, pp.
33
52
.
22.
Gupta
,
K. C.
, 1997,
Mechanics and Control of Robots
,
Springer
,
New York
, pp.
51
52
.
23.
Herrera-Bendezu
,
L. G.
,
Mu
,
E.
, and
Cain
,
J. T.
, 1988, “
Symbolic Computation of Robot Manipulator Kinematics
,”
Proceedings of the 1988 IEEE International Conference on Robotics and Automation
, Philadephia, PA, Apr. 24–29, pp.
993
998
.
24.
Rieseler
,
H.
, and
Wahl
,
F. M.
, 1990, “
Fast Symbolic Computation of the Inverse Kinematics of Robots
,”
Proceedings of the 1990 IEEE International Conference on Robotics and Automation
, Cincinnati, OH, May 13–18, pp.
462
467
.
25.
Kong
,
X.
and
Gosselin
,
C. M.
, 2001, “
Uncertainty Singularity Analysis of Parallel Manipulators Based on the Instability Analysis of Structures
,”
Int. J. Robot. Res.
0278-3649,
20
(
11
), pp.
847
856
.
26.
Gosselin
,
C.
, and
Angeles
,
J.
, 1990, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
1042-296X,
6
(
3
), pp.
281
290
.
27.
Yang
,
J.
, and
Gao
,
F.
, 2009, “
Singularity Loci of an Orthogonal Spherical Two-Degree-of-Freedom Parallel Mechanism
,”
Frontiers of Mechanical Engineering in China
1673-3479,
4
(
4
), pp.
379
385
.
28.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2002, “
Generation Of Architecturally Singular 6-SPS Parallel Manipulators With Linearly Related Planar Platforms
,”
Electronic Journal of Computational Kinematics
,
1
(
1
), Paper No. 7 (9 pages).
29.
Karger
,
A.
, 2008, “
Architecturally Singular Non-Planar Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
43
(
3
), pp.
335
346
.
30.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2002, “
Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator
,”
Int. J. Robot. Res.
0278-3649,
21
(
9
), pp.
791
798
.
31.
Wu
,
C.
,
Liu
,
X. -J.
,
Wang
,
L.
, and
Wang
,
J.
, 2010, “
Optimal Design of Spherical 5R Parallel Manipulators Considering the Motion/Force Transmissibility
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
031002
.
You do not currently have access to this content.