In kinematics, the problem of motion reconstruction involves generation of a motion from the specification of distinct positions of a rigid body. In its most basic form, this problem involves determination of a screw displacement that would move a rigid body from one position to the next. Much, if not all of the previous work in this area, has been based on point geometry. In this paper, we develop a method for motion reconstruction based on line geometry. A geometric method is developed based on line geometry that can be considered a generalization of the classical Reuleaux method used in two-dimensional kinematics. In two-dimensional kinematics, the well-known method of finding the instant center of rotation from the directions of the velocities of two points of the moving body can be considered an instantaneous case of Reuleaux’s method. This paper will also present a three-dimensional generalization for the instant center method or the instantaneous case of Reuleaux’s method using line geometry.

1.
Thompson
,
E. H.
, 1958, “
A Method for the Construction of Orthogonal Matrices
,”
Photogramm. Rec.
0031-868X,
3
, pp.
55
59
.
2.
Thompson
,
E. H.
, 1959, “
On Exact Linear Solution of the Problem of Absolute Orientation
,”
Photogrammetria
0924-2716,
15
, pp.
163
179
.
3.
Schut
,
G. H.
, 1959, “
Construction of Orthogonal Matrices and Their Applications in Analytic Photogrammetry
,”
Photogrammetria
0924-2716,
15
, pp.
149
162
.
4.
Horn
,
B. K. P.
, 1987, “
Closed-Form Solution of Absolute Orientation Using Unit Quaternions
,”
J. Opt. Soc. Am. A
0740-3232,
4
(
4
), pp.
629
642
.
5.
Paul
,
R.
, ed., 1982,
Robot Manipulators
,
MIT
,
Cambridge, MA
.
6.
Suh
,
C. H.
and
Radcliffe
,
C. W.
, eds., 1978,
Kinematics and Mechanisms Design
,
Wiley
,
New York
.
7.
Rossignac
,
J. R.
, and
Kim
,
J. J.
, 2001, “
Computing and Visualizing Post-Interpolating 3D Motions
,”
Comput.-Aided Des.
0010-4485,
33
(
4
), pp.
279
291
.
8.
Ravani
,
B.
, and
Ge
,
Q. J.
, 1993, “
Computation of Spatial Displacements From Geometric Features
,”
ASME J. Mech. Des.
0161-8458,
115
, pp.
95
102
.
9.
Ge
,
Q. J.
, and
Ravani
,
B.
, 1994, “
Computation of Spatial Displacements From Redundant Geometric Features
,”
ASME J. Mech. Des.
0161-8458,
116
, pp.
1073
1080
.
10.
Laub
,
A. J.
, and
Shiflett
,
G. R.
, 1983, “
A Linear Algebra Approach to the Analysis of Rigid Body Displacement From Position and Velocity Data
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
, pp.
92
95
.
11.
Angeles
,
J.
, 1986, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part I: Finitely-Separated Positions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
32
38
.
12.
Angeles
,
J.
, 1986, “
Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part II: Infinitely-Separated Positions
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
39
43
.
13.
Page
,
A.
,
de Rosario
,
H.
,
Mata
,
V.
, and
Atienza
,
C.
, 2009, “
Experimental Analysis of Rigid Body Motion. A Vector Method to Determine Finite and Infinitestimal Displacements From Point Coordinates
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
031005
.
14.
Eberharter
,
J. K.
, and
Ravani
,
B.
, 2006, “
Kinematic Registration in 3D Using the 2D Reuleaux Method
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
349
355
.
15.
Reuleaux
,
F.
, ed., 1876,
Theoretische Kinematik: Grundzuge einer Theorie des Maschinenwesens (Kinematics of Machinery. Outlines of a Theory of Machine)
,
Macmillan
,
London
.
16.
Meriam
,
J. L.
, and
Kraige
,
L. G.
, 1999,
Engineering Mechanics, Dynamics
,
Wiley
,
New York
.
17.
Bottema
,
J. J.
, and
Roth
,
B.
, 1990,
Theoretical Kinematics
,
Dover
,
New York
.
18.
Veldkamp
,
G. R.
, 1976, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics
,”
Mech. Mach. Theory
0094-114X,
11
, pp.
141
156
.
19.
Peternell
,
M.
,
Pottmann
,
H.
, and
Ravani
,
B.
, 1999, “
On the Computational Geometry of Ruled Surfaces
,”
Comput.-Aided Des.
0010-4485,
31
(
1
), pp.
17
32
.
20.
Dimentberg
,
F. M.
, The Screw Calculus and Its Applications in Mechanics, English translation: AD680993.
21.
Yang
,
A. T.
, 1974, “
Calculus of Screws
,”
Basic Questions of Design Theory
,
W. R.
Spillers
, ed.,
North-Holland
,
Amsterdam
, pp.
266
281
.
You do not currently have access to this content.