Carbon nanotubes (CNTs) may be used to create nanoscale compliant mechanisms that possess large ranges of motion relative to their device size. Many macroscale compliant mechanisms contain compliant elements that are subjected to fixed-clamped boundary conditions, indicating that they may be of value in nanoscale design. The combination of boundary conditions and large strains yield deformations at the tube ends and strain stiffening along the length of the tube, which are not observed in macroscale analogs. The large-deflection behavior of a fixed-clamped CNT is not well-predicted by macroscale large-deflection beam bending models or truss models. Herein, we show that a pseudo-rigid-body model may be adapted to capture the strain stiffening behavior and, thereby, predict a CNT’s fixed-clamped behavior with less than 3% error from molecular simulations. The resulting pseudo-rigid-body model may be used to set initial design parameters for CNT-based compliant mechanisms. This removes the need for iterative, time-intensive molecular simulations during initial design phases.

1.
Ekinci
,
K.
, 2005, “
Electromechanical Transducers at the Nanoscale: Actuations and Sensing of Motion in Nanoelectromechanical Systems (NEMS)
,”
Small
1613-6810,
1
(
8–9
), pp.
786
797
.
2.
Stampfer
,
C.
,
Jungen
,
A.
,
Linderman
,
R.
,
Obergfell
,
D.
,
Roth
,
S.
, and
Hierold
,
C.
, 2006, “
Nano-Electromechanical Displacement Sensing Based on Single-Walled Carbon Nanotubes
,”
Nano Lett.
1530-6984,
6
(
7
), pp.
1449
1453
.
3.
Witkamp
,
B.
,
Poot
,
M.
, and
van der Zant
,
H. S. J.
, 2006, “
Bending-Mode Vibration of a Suspended Nanotube Resonator
,”
Nano Lett.
1530-6984,
6
(
12
), pp.
2904
2908
.
4.
Rueckes
,
T.
,
Kim
,
K.
,
Joselevich
,
E.
,
Tseng
,
G.
,
Cheung
,
C.
, and
Lieber
,
C.
, 2000, “
Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing
,”
Science
0036-8075,
289
(
5476
), pp.
94
97
.
5.
Dragoman
,
M.
,
Takacs
,
A.
,
Muller
,
A. A.
,
Hartnagel
,
H.
,
Plana
,
R.
,
Grenier
,
K.
, and
Dubuc
,
D.
, 2007, “
Nanoelectromechanical Switches Based on Carbon Nanotubes for Microwave and Millimeter Waves
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
113102
.
6.
Yu
,
M. -F.
,
Files
,
B.
,
Arepalli
,
S.
, and
Ruoff
,
R.
, 2000, “
Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties
,”
Phys. Rev. Lett.
0031-9007,
84
(
24
), pp.
5552
5555
.
7.
Lu
,
J.
, and
Zhang
,
L.
, 2006, “
Analysis of Localized Failure of Single-Wall Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
35
, pp.
432
441
.
8.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
9.
DiBiasio
,
C.
,
Culpepper
,
M.
,
Panas
,
R.
,
Howell
,
L.
, and
Magleby
,
S.
, 2008, “
Comparison of Molecular Simulation and Pseudo-Rigid-Body Model Predictions for a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism
,”
ASME J. Mech. Des.
0161-8458,
130
(
4
), p.
042308
.
10.
Ke
,
C.
,
Espinosa
,
H. D.
, and
Pugno
,
N.
, 2005, “
Numerical Analysis of Nanotube Based NEMS Devices—Part II: Role of Finite Kinematics, Stretching and Charge Concentrations
,”
ASME J. Appl. Mech.
0021-8936,
72
(
5
), pp.
726
731
.
11.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 2005,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
,
London
.
12.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
0022-5096,
52
, pp.
789
821
.
13.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. -F.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
0003-6900,
55
(
6
), pp.
495
533
.
14.
DiBiasio
,
C.
,
Cullinan
,
M.
, and
Culpepper
,
M.
, 2007, “
Difference Between Bending and Stretching Moduli of Single-Walled Carbon Nanotubes That are Modeled as an Elastic Tube
,”
Appl. Phys. Lett.
0003-6951,
90
(
20
), p.
203116
.
15.
Culpepper
,
M.
,
DiBiasio
,
C.
,
Panas
,
R.
,
Magleby
,
S.
, and
Howell
,
L.
, 2006, “
Simulation of a Carbon Nanotube-Based Compliant Parallel-Guiding Mechanism: A Nanomechanical Building Block
,”
Appl. Phys. Lett.
0003-6951,
89
(
20
), p.
203111
.
16.
Doyle
,
J.
, 2001,
Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
,
Springer
,
New York
.
17.
Senturia
,
S.
, 2002,
Microsystem Design
, 1st ed.,
Kluwer Academic
,
Boston, MA
, p.
252
.
18.
Leach
,
A. R.
, 2001,
Molecular Modeling
, 2nd ed.,
Prentice Hall
,
Harlow, England
.
19.
Lu
,
J.
, 1997, “
Elastic Properties of Carbon Nanotubes and Nanoropes
,”
Phys. Rev. Lett.
0031-9007,
79
(
7
), pp.
1297
1300
.
20.
Ouakad
,
H. M.
, and
Younis
,
M. I.
, 2010, “
Nonlinear Cynamics of Electrically actuated Carbon Nanotube
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
5
(
1
), p.
011009
.
You do not currently have access to this content.