The increasing use of parallel cable-driven mechanisms calls for a better understanding of their behavior and highly efficient algorithms to attenuate their drawbacks at the design stage. One of these drawbacks is the high probability of mechanical interferences between the moving parts of the mechanism. In this paper, the phenomenon is described under the assumption that a cable is a line segment in space. When a mechanical contact occurs between two cables or between a cable and an edge of the end effector, these entities necessarily lie in the same plane, and then the three-dimensional problem becomes two-dimensional. This fact is used to simplify the equations, and leads to exhaustive descriptions of the associated interference loci in the constant-orientation workspace of a cable-driven mechanism. These results provide a fast method to graphically represent all interference regions in the manipulator workspace, given its geometry and the orientation of its end effector.
Skip Nav Destination
e-mail: simon.perreault.2@ulaval.ca
e-mail: philippe.cardou@gmc.ulaval.ca
e-mail: gosselin@gmc.ulaval.ca
e-mail: martin.otis.2@ulaval.ca
Article navigation
August 2010
Research Papers
Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms
Simon Perreault,
Simon Perreault
Département de Génie Mécanique,
e-mail: simon.perreault.2@ulaval.ca
Université Laval
, Québec, QC, G1V 0A6, Canada
Search for other works by this author on:
Philippe Cardou,
Philippe Cardou
Département de Génie Mécanique,
e-mail: philippe.cardou@gmc.ulaval.ca
Université Laval
, Québec, QC, G1V 0A6, Canada
Search for other works by this author on:
Clément M. Gosselin,
Clément M. Gosselin
Département de Génie Mécanique,
e-mail: gosselin@gmc.ulaval.ca
Université Laval
, Québec, QC, G1V 0A6, Canada
Search for other works by this author on:
Martin J.-D. Otis
Martin J.-D. Otis
Département de Génie Mécanique,
e-mail: martin.otis.2@ulaval.ca
Université Laval
, Québec, QC, G1V 0A6, Canada
Search for other works by this author on:
Simon Perreault
Département de Génie Mécanique,
Université Laval
, Québec, QC, G1V 0A6, Canadae-mail: simon.perreault.2@ulaval.ca
Philippe Cardou
Département de Génie Mécanique,
Université Laval
, Québec, QC, G1V 0A6, Canadae-mail: philippe.cardou@gmc.ulaval.ca
Clément M. Gosselin
Département de Génie Mécanique,
Université Laval
, Québec, QC, G1V 0A6, Canadae-mail: gosselin@gmc.ulaval.ca
Martin J.-D. Otis
Département de Génie Mécanique,
Université Laval
, Québec, QC, G1V 0A6, Canadae-mail: martin.otis.2@ulaval.ca
J. Mechanisms Robotics. Aug 2010, 2(3): 031016 (9 pages)
Published Online: July 27, 2010
Article history
Received:
September 29, 2009
Revised:
January 8, 2010
Online:
July 27, 2010
Published:
July 27, 2010
Citation
Perreault, S., Cardou, P., Gosselin, C. M., and Otis, M. J. (July 27, 2010). "Geometric Determination of the Interference-Free Constant-Orientation Workspace of Parallel Cable-Driven Mechanisms." ASME. J. Mechanisms Robotics. August 2010; 2(3): 031016. https://doi.org/10.1115/1.4001780
Download citation file:
Get Email Alerts
Investigation on a Class of 2D Profile Amplified Stroke Dielectric Elastomer Actuators
J. Mechanisms Robotics (March 2025)
Gait Generation of a 10-Degree-of-Freedom Humanoid Robot on Deformable Terrain Based on Spherical Inverted Pendulum Model
J. Mechanisms Robotics (February 2025)
Related Articles
On the Design of Adaptive Cable-Driven Systems
J. Mechanisms Robotics (May,2011)
Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms
J. Mech. Des (March,2005)
An Elimination Procedure for Solving the Geometric Design of Spatial 3R Manipulators
J. Mech. Des (January,2006)
Identification of Contact Dynamics Model Parameters From Constrained Robotic Operations
J. Dyn. Sys., Meas., Control (June,2006)
Related Proceedings Papers
Grasping and Control Issues in Adaptive End Effectors
IDETC-CIE2004
A Finger Mechanism for Adaptive End Effectors
IDETC-CIE2002
Related Chapters
Feedback-Aided Minimum Joint Motion
Robot Manipulator Redundancy Resolution
QP-Based Self-Motion Planning
Robot Manipulator Redundancy Resolution
Pseudoinverse Method and Singularities Discussed
Robot Manipulator Redundancy Resolution