Estimation of the risk of injury to human different joints during occupational tasks plays an important role to reduce injuries before the operators carry out the tasks. This paper presents a methodology for determining the static joint torques of a human model considering balance for both standing and seating tasks such as weight lifting, material handling, and seated operating tasks in the assembly line. A high fidelity human model has been developed, and recursive dynamics has been used to formulate the static equation of motion. An alternative and efficient formulation of the zero-moment point for static balance and the approximated (ground/seat) support reaction forces/moments are derived from the resultant reaction loads, which includes the gravity and externally applied loads. The proposed method can be used for both standing and seating tasks for assessing the stability/balance of the posture. The proposed formulation can be beneficial to physics-based simulation of humanoids and human models. Also, the calculated joint torques can be considered as an indicator to assess the risks of injuries when human models perform various tasks. The computational time for each case is close to 0.015 s.

1.
Chaffin
,
D. B.
, 1975, “
On the Validity of Biomechanical Models of the Low Back for Weight Lifting Analysis
,”
ASME
Paper No. 75-WA-Biol.-l.
2.
Chaffin
,
D. B.
,
Freivalds
,
A.
, and
Evans
,
S. M.
, 1987, “
On the Validity of an Isometric Biomechanical Model of Worker Strengths
,”
IIE Trans.
0740-817X,
19
(
3
), pp.
280
288
.
3.
Selbie
,
W. S.
, and
Caldwell
,
G. E.
, 1996, “
A Simulation Study of Vertical Jumping From Different Starting Postures
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1137
1146
.
4.
Kyung
,
G.
, 2008, “
An Integrated Human Factors Approach to Design and Evaluation of the Driver Workspace and Interface: Driver Perceptions, Behaviors, and Objective Measures
,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.
5.
Kino
,
H.
,
Saisyo
,
K.
,
Hatanaka
,
Y.
, and
Kawamura
,
S.
, 2009, “
Torque Estimation System for Human Leg in Passive Motion Using Parallel-Wire Driven Mechanism and Iterative Learning Control
,”
Proceedings of the 2009 IEEE 11th International Conference on Rehabilitation Robotics
, Kyoto International Conference Center, Japan, June 23–26.
6.
Raison
,
M.
,
Detrembleur
,
C.
,
Fisette
,
P.
,
Samin
,
J. C.
, and
Willems
,
P.
, 2005, “
Determination of Joint Kinematics and Dynamics in the Human Body: Application to a Subject Getting Up From a Seat
,”
Proceedings of the Eccomas Thematic Conference, Multibody Dynamics 2005, on Advances in Computational Multibody Dynamics
, Madrid, Spain, pp.
1
182:28
.
7.
Vukobratović
,
M.
, and
Borovac
,
B.
, 2004, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
International Journal of Humanoid Robotics
,
1
(
1
), pp.
157
173
.
8.
Vukobratović
,
M.
,
Borovac
,
B.
, and
Potkonjak
,
V.
, 2006, “
ZMP: A Review of Some Basic Misunderstandings
,”
International Journal of Humanoid Robotics
,
3
(
2
), pp.
153
175
.
9.
Goswami
,
A.
, 1999, “
Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
523
533
.
10.
Popovic
,
M. B.
,
Goswami
,
A.
, and
Herr
,
H.
, 2005, “
Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications
,”
Int. J. Robot. Res.
0278-3649,
24
(
12
), pp.
1013
1032
.
11.
Sardain
,
P.
, and
Bessonnet
,
G.
, 2004, “
Forces Acting on a Biped Robot. Center of Pressure-Zero Moment Point
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
34
(
5
), pp.
630
637
.
12.
Nagasaka
,
K.
,
Kuroki
,
Y.
,
Suzuki
,
S.
,
Itoh
,
Y.
, and
Yamaguchi
,
J.
, 2004, “
Integrated Motion Control for Walking, Jumping and Running on a Small Bipedal Entertainment Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
4
, pp.
3189
3194
.
13.
Xiang
,
Y.
,
Chung
,
H. -J.
,
Mathai
,
A.
,
Rahmatalla
,
S.
,
Kim
,
J. H.
,
Marler
,
T.
,
Beck
,
S.
,
Yang
,
J.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
, 2007, “
Optimization-Based Dynamic Human Walking Prediction
,”
Proceedings of the SAE Digital Human Modeling for Design and Engineering
, Seattle, WA.
14.
Hirose
,
M.
, and
Ogawa
,
K.
, 2007, “
Honda Humanoid Robots Development
,”
Philos. Trans. R. Soc. London
0962-8428,
365
, pp.
11
19
.
15.
Kuffner
,
J. J.
,
Kagami
,
S.
,
Nishiwaki
,
K.
,
Inaba
,
M.
, and
Inoue
,
H.
, 2002, “
Dynamically-Stable Motion Planning for Humanoid Robots
,”
Auton. Rob.
0929-5593,
12
(
1
), pp.
105
118
.
16.
Inoue
,
K.
,
Nishihama
,
Y.
,
Arai
,
T.
, and
Mae
,
Y.
, 2002, “
Mobile Manipulation of Humanoid Robots—Body and Leg Control for Dual Arm Manipulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2259
2264
.
17.
Nishihama
,
Y.
,
Inoue
,
K.
,
Arai
,
T.
, and
Mae
,
Y.
, 2003, “
Mobile Manipulation of Humanoid Robots—Control Method for Accurate Manipulation
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
2
, pp.
1914
1919
.
18.
Harada
,
K.
, and
Kaneko
,
M.
, 2003, “
Whole Body Manipulation
,”
Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing
, Vol.
1
, pp.
190
195
.
19.
Vukobratović
,
M.
,
Potkonjak
,
V.
,
Babković
,
K.
, and
Borovac
,
B.
, 2007, “
Simulation Model of General Human and Humanoid Motion
,”
Multibody Syst. Dyn.
1384-5640,
17
(
1
), pp.
71
96
.
20.
Park
,
J.
,
Haan
,
J.
, and
Park
,
F. C.
, 2007, “
Convex Optimization Algorithms for Active Balancing of Humanoid Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
4
), pp.
817
822
.
21.
Yamane
,
K.
, and
Nakamura
,
Y.
, 2003, “
Dynamics Filter—Concept and Implementation of Online Motion Generator for Human Figures
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
3
), pp.
421
432
.
22.
Takubo
,
T.
,
Inoue
,
K.
, and
Arai
,
T.
, 2005, “
Pushing an Object Considering the Hand Reflect Forces by Humanoid Robot in Dynamic Walking
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
1706
1711
.
23.
Harada
,
K.
,
Kajita
,
S.
,
Kaneko
,
K.
, and
Hirukawa
,
H.
, 2006, “
Dynamics and Balance of a Humanoid Robot During Manipulation Tasks
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
3
), pp.
568
575
.
24.
Ude
,
A.
,
Man
,
C.
,
Riley
,
M.
, and
Atkeson
,
C. G.
, 2000, “
Automatic Generation of Kinematic Models for the Conversion of Human Motion Capture Data Into Humanoid Robot Motion
,”
Proceedings of the IEEE/RSJ International Conference on Humanoid Robots
.
25.
Pollard
,
N. S.
,
Hodgins
,
J. K.
,
Riley
,
M. J.
, and
Atkeson
,
C. G.
, 2002, “
Adapting Human Motion for the Control of a Humanoid Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1390
1397
.
26.
Nakaoka
,
S.
,
Nakazawa
,
A.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Morisawa
,
M.
, and
Ikeuchi
,
K.
, 2005, “
Task Model of Lower Body Motion for a Biped Humanoid Robot to Imitate Human Dances
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Vol.
2
, pp.
3157
3162
.
27.
Kim
,
J.
,
Xiang
,
Y.
,
Bhatt
,
R.
,
Yang
,
J.
,
Chung
,
H. J.
,
Patrick
,
A.
,
Arora
,
J.
, and
Abdel-Malek
,
K.
, 2008, “
Efficient ZMP Formulation and Effective Motions for General Tasks of a Whole-Body Biped Human-Like Mechanism
,”
Proceedings of the ASME International Design Engineering Technical Conferences
, New York City, NY, Aug. 3–6.
28.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
0021-8936,
77
, pp.
215
221
.
29.
Toogood
,
R. W.
, 1989, “
Efficient Robot Inverse and Direct Dynamics Algorithms Using Microcomputer Based Symbolic Generation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
1827
1832
.
30.
Fu
,
K. S.
,
Gonzalez
,
R. C.
, and
Lee
,
C. S. G.
, 1987,
Robotics: Control, Sensing, Vision, and Intelligence
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.