A novel methodology for the design of a gravity-balanced serial-type spatial manipulator is presented. In the design, gravity effects of the system can be completely compensated at any configuration. The gravity balance of the n-DOF manipulator is achieved by the suspensions of only n zero-free-length springs, where each spring is individually fitted between a primary link and its adjacent auxiliary link. No spring has to be installed across the spatial manipulator from a far remote link to ground such that the motion interference among the springs and the links can be prevented. Besides, since the embedded auxiliary links along the primary links of the manipulator form a series of spatial parallelogram revolute-spherical-spherical-revolute modules, the active DOFs of the system remain the same as the primary manipulator and the range of motion of the manipulator will not be hindered. As a result, the n-DOF manipulator can serve the general function of an articulated serial-type manipulator in kinematics. The simulated results of a 6DOF gravity-balanced manipulator modeled on ADAMS shows that the static equilibrium as well as the kinematics of the system can be successfully accomplished by this proposed methodology.

1.
Nathan
,
R. H.
, 1985, “
A Constant Force Generation Mechanism
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
(
4
), pp.
508
512
.
2.
Streit
,
D. A.
, and
Gilmore
,
B. J.
, 1989, “
‘Perfect’ Equilibrators for Rotatable Bodies
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
111
(
4
), pp.
451
458
.
3.
Baradat
,
C.
,
Arakelian
,
V.
,
Briot
,
S.
, and
Guegan
,
S.
, 2008, “
Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators
,”
ASME J. Mech. Des.
0161-8458,
130
(
7
), p.
072305
.
4.
Gosselin
,
C. M.
, and
Wang
,
J.
, 1998, “
On the Design of Gravity-Compensated Six-Degree-of-Freedom Parallel Mechanisms
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
, Leuven, Beigium, May.
5.
Gosselin
,
C. M.
, 1999, “
Static Balancing of Spherical 3-DOF Parallel Mechanisms and Manipulators
,”
Int. J. Robot. Res.
0278-3649,
18
(
8
), pp.
819
829
.
6.
Herder
,
J. L.
, 1998, “
Design of Spring Force Compensation Systems
,”
Mech. Mach. Theory
0094-114X,
33
, pp.
151
161
.
7.
Streit
,
D. A.
, and
Shin
,
E.
, 1993, “
Equilibrators for Planar Linkages
,”
ASME J. Mech. Des.
0161-8458,
115
(
3
), pp.
604
611
.
8.
Lin
,
P. -Y.
,
Shieh
,
W. -B.
, and
Chen
,
D. -Z.
, 2009, “
Design of Perfectly Static-Balanced One-DOF Planar Linkage With Revolute Joint Only
,”
ASME J. Mech. Des.
0161-8458,
131
(
5
), pp.
051004
.
9.
Laliberte
,
T.
,
Gosselin
,
C. M.
, and
Martin
,
J.
, 1999, “
Static Balancing of 3-DOF Parallel Mechanism
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
4
(
4
), pp.
363
377
.
10.
Wongratanaphisan
,
T.
,
Cole
,
M. O. T.
, 2008, “
Analysis of a Gravity Compensated Four-Bar Linkage Mechanism With Linear Spring Suspension
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), p.
011006
.
11.
Van Dorsser
,
W. D.
,
Herder
,
J. L.
,
Wisse
,
B. M.
, and
Barents
,
R.
, 2008, “
Balancing device
,” U.S. Patent No. 0,210,842-A1.
12.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
, 1995, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
117
(
4
), pp.
655
658
.
13.
Van Dorsser
,
W. D.
,
Barents
,
R.
,
Wisse
,
B. M.
,
Schenk
,
M.
, and
Herder
,
J. L.
, 2008, “
Energy-Free Adjustment of Gravity Equilibrators by Adjusting the Spring Stiffness
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
222
(
9
), pp.
1839
1846
.
14.
Tuda
,
G.
, and
Mizuguchi
,
O.
, 1983, “
Arm With Gravity-Balancing Function
,” U.S. Patent No. 4,383,455.
15.
Ebert-Uphoff
,
I.
, and
Johnson
,
K.
, 2002, “
Practical Considerations for the Static Balancing of Mechanisms of Parallel Architecture
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-body Dynamics
,
216
, pp.
73
85
.
16.
Arakelian
,
V.
, and
Ghazaryan
,
S.
, 2008, “
Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices
,”
Mech. Mach. Theory
0094-114X,
43
(
5
), pp.
565
575
.
17.
Wongratanaphisan
,
T.
, and
Chew
,
M.
, 2002, “
Gravity Compensation of Spatial Two-DOF Serial Manipulators
,”
J. Rob. Syst.
0741-2223,
19
(
7
), pp.
329
347
.
18.
Tuijthof
,
G. J. M.
, and
Herder
,
J. L.
, 2000, “
Design, Actuation and Control of an Anthropomorphic Robot Arm
,”
Mech. Mach. Theory
0094-114X,
35
(
7
), pp.
945
962
.
19.
Agrawal
,
S. K.
, and
Fattah
,
A.
, 2004, “
Gravity-Balancing of Spatial Robotic Manipulator
,”
Mech. Mach. Theory
0094-114X,
39
(
12
), pp.
1331
1344
.
20.
Brown
,
G.
, and
DiGuilio
,
A. O.
, 1980, “
Support Apparatus
,” U.S. Patent No. 4,208,028.
21.
Simionescu
,
I.
, and
Ciupitu
,
L.
, 2000, “
The Static Balancing of the Industrial Robot Arms Part I: Discrete Balancing
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1287
1298
.
22.
Simionescu
,
I.
, and
Ciupitu
,
L.
, 2000, “
The Static Balancing of the Industrial Robot Arms Part II: Continuous Balancing
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1299
1311
.
23.
Gosselin
,
C. M.
, 2006, “
Adaptive Robotic Mechanical Systems: A Design Paradigm
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
192
198
.
24.
Arsenault
,
M.
, and
Gosselin
,
C. M.
, 2007, “
Static Balancing of Tensegrity Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
129
(
3
), pp.
295
300
.
25.
Kutzbach
,
K.
, 1929, “
Mechanische Leitengsverzweigung, Maschinenbau
,”
Der Betrieb
0005-9935,
8
(
21
), pp.
710
716
.
26.
Waldron
,
K. J.
, and
Kinzel
,
G. L.
, 1999,
Kinematics, Dynamics, and Design of Machinery
,
Wiley
,
New York
, pp.
22
25
.
27.
Arikawa
,
K.
, 2008, “
Realization of a 6-DOF Manipulator With an Unconventional Topological Structure
,”
ASME
Paper No. DETC2008-49621.
28.
Denavit
,
J.
, and
Hartenberg
,
R. S.
, 1955, “
A Kinematic Notation for Lower Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
0021-8936,
77
, pp.
215
221
.
You do not currently have access to this content.