The instant centers of velocity (ICs) of most planar mechanisms can be determined as the intersection of the lines of centers, also known as Aronhold–Kennedy lines, along which the ICs of three distinct links in relative motion are located. It is shown how these intersections can be kept track of in matrix form, very suitable to algorithmic implementation on a computer. Solving for the coordinates of the actual instant centers can be also cast in matrix form. Moreover, the singularity and force transmissivity of the mechanism are reflected in the condition numbers of these matrices and the degree of dispersion of the secondary instant centers i.e., the instant centers that cannot be found by inspection.
1.
Hartenberg
, R. S.
, and Denavit
, J.
, 1964, Kinematic Synthesis of Linkages
, McGraw-Hill
, New York
.2.
Paul
, B.
, 1979, Kinematics and Dynamics of Planar Machinery
, Prentice-Hall
, Englewood Cliffs, NJ
.3.
Zypman
, F. R.
, 2007, “Instantaneous Center of Rotation and Centrodes: Background and New Examples
,” Int. J. Mech. Eng. Educ.
0306-4190, 35
, pp. 79
–90
.4.
Hain
, K.
, 1967, Applied Kinematics
, McGraw-Hill
, New York
.5.
Tao
, D. C.
, 1967, Fundamentals of Applied Kinematics
, Addison-Wesley
, Reading, MA
.6.
Gillespie
, T. D.
, 1992, Fundamentals of Vehicle Dynamics
, SAE International
, Warrendale, PA
.7.
Luck
, K. L.
, and Modler
, C. H.
, 1990, Getriebetechnik. Analyse Synthese Optimirung
, Springer
, New York
.8.
Frankel
, V. H.
, Burstein
, A. H.
, and Brooks
, D. B.
, 1971, “Biomechanics of Internal Derangement of the Knee. Patomechanics as Determined by Analysis of the Instant Center of Motion
,” The Journal of Bone and Joint Surgery
, 53-A
, pp. 945
–977
.9.
Gilmore
, B. J.
, and Cipra
, R. J.
, 1983, “An Analytical Method for Computing the Instant Centers, Centrodes, Inflection Circles, and Centers of Curvature of the Centrodes by Successively Grounding Each Link
,” ASME J. Mech., Transm., Autom. Des.
0738-0666, 105
, pp. 407
–414
.10.
Dijksman
, E. A.
, 1977, “Why Joint-Joining is Applied on Complex Linkages
,” Proceedings of the Second IFToMM International Symposium on Linkages and Computer Aided Design Methods, SYROM ’77
, Bucharest, Romania
, Jun. 16–21, Paper No. 17, Vol. 11
, pp. 185
–212
.11.
Bagci
, C.
, 1983, “Turned Velocity Image and Turned Velocity Superposition Techniques for the Velocity Analysis of Multi-Input Mechanisms Having Kinematic Indeterminacies
,” Mechanical Engineering News
, 20
(1
), pp. 10
–15
.12.
Yan
, H.-S.
, and Hsu
, M.-H.
, 1992, “An Analytical Method for Locating Velocity Instantaneous Centers
,” Proceedings of the 22nd Biennial ASME Mechanisms Conference
, Scottsdale, AZ
, Sept. 13–16, Vol. 47
, pp. 353
–359
.13.
Foster
, D. E.
, and Pennock
, G. R.
, 2003, “A Graphical Method to Find the Secondary Instantaneous Centers of Zero Velocity for the Double Butterfly Linkage
,” ASME J. Mech. Des.
1050-0472, 125
(2
), pp. 268
–274
.14.
Foster
, D. E.
, and Pennock
, G. R.
, 2005, “A Graphical Method to Find the Secondary Instantaneous Centers of Zero Velocity for the Double Butterfly Linkage
,” ASME J. Mech. Des.
1050-0472, 127
(2
), pp. 249
–256
.15.
Di Gregorio
, R.
, 2008, “An Algorithm for Analytically Calculating the Positions of the Secondary Instant Centers of Indeterminate Linkages
,” ASME J. Mech. Des.
1050-0472, 130
(4
), p. 042303
.16.
Chang
, Y-P.
, and Her
, I.
, 2008, “A Virtual Cam Method for Locating Instant Centers of Kinematically Indeterminate Linkages
,” ASME J. Mech. Des.
1050-0472, 130
(6
), p. 062304
.17.
Cleghorn
, W. L.
, 2005, Mechanics of Machines
, Oxford University Press
, New York
.18.
Erdman
, A. G.
, Sandor
, G. N.
, and Kota
, S.
, 2001, Mechanism Design: Analysis and Synthesis
, 4th ed., Prentice-Hall
, Englewood Cliffs, NJ
.19.
Norton
, R. L.
, 2007, Design of Machinery
, 4th ed., McGraw-Hill
, New York
.20.
Uicker
, J. J.
, Pennock
, G. R.
, and Shigley
, J. E.
, 2003, Theory of Machines and Mechanisms
, 3rd ed., Oxford University Press
, New York
.21.
Waldron
, K. J.
, and Kinzel
, G. L.
, 2003, Kinematics, Dynamics, and Design of Machinery
, 2nd ed., Wiley
, New York
.22.
Simionescu
, P. A.
, and Beale
, D. G.
, 2002, “Synthesis and Analysis of the Five-Link Rear Suspension System Used in Automobiles
,” Mech. Mach. Theory
0094-114X, 37
, pp. 815
–832
.23.
Tsai
, L-W.
, 2001, Mechnism Design. Enumeration of Kinematic Structures According to Function
, CRC
, Boca Raton, FL
.24.
Oderfeld
, J.
, and Pogorzelski
, A.
, 1978, “A Computer Algorithm for Instantaneous Center of Rotation
,” Mech. Mach. Theory
0094-114X, 13
, pp. 85
–93
.25.
Di Gregorio
, R.
, 2007, “A Novel Geometric and Analytic Technique for the Singularity Analysis of One-dof Planar Mechanisms
,” Mech. Mach. Theory
0094-114X, 42
(11
), pp. 1462
–1483
.26.
The MathWorks, MATLAB, http://www.mathworks.com/products/matlab/http://www.mathworks.com/products/matlab/
27.
Gosselin
, C. M.
, and Angeles
, J.
, 1990, “Singularity Analysis of Closed-Loop Kinematic Chains
,” IEEE Trans. Rob. Autom.
1042-296X, 6
(3
), pp. 281
–290
.28.
Lin
, C. C.
, and Chang
, W. T.
, 2002, “The Force Transmissivity Index of Planar Linkage Mechanisms
,” Mech. Mach. Theory
0094-114X, 37
, pp. 1465
–1485
.29.
Myszka
, D. H.
, Murray
, A. P.
, and Schmiedeler
, J. P.
, 2008, “Singularity Analysis of an Extensible Kinematic Architecture: Assur Class N., Order N-1
,” ASME J. Mech. Rob.
1942-4302, 1
(1
), p. 011009
.30.
Yan
, H.-S.
, and Wu
, L.-I.
, 1989, “On the Dead-Center Positions of Planar Linkage Mechanisms
,” ASME J. Mech., Transm., Autom. Des.
0738-0666, 111
, pp. 40
–46
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.