Abstract

Force feedback devices offer realistic and intuitive feedback to operators, and achieving higher accuracy and transparency has been a prominent research focus in this field. However, errors in real-time force or position calculations are inevitable, which can have adverse effects on the accuracy of the equipment. This article presents the design of a parallel mechanism that incorporates a constant force and velocity mapping relationship based on the type synthesis of the constant Jacobian matrix. Specifically, the mechanism maintains a fixed direction of force applied to the operating platform by the drive pair, which is mounted on the fixed platform in each limb, irrespective of position changes. This unique feature enables the mechanism to achieve a complete net weight balance. The implementation method is detailed in this article, which involves adding appropriate counterweights to achieve a balance between the weight of the connecting rod and the overall gravity of the operating platform. Furthermore, the optimization of structural parameters helps to improve the performance of the developed prototype. The proposed design scheme not only addresses the fundamental reduction of errors caused by real-time force and position mapping solving but also enhances operational transparency. Finally, simulation and experimental tests are conducted to validate the proposed theory.

References

1.
Abdi
,
E.
,
Kulic
,
D.
, and
Croft
,
E.
,
2020
, “
Haptics in Teleoperated Medical Interventions: Force Measurement, Haptic Interfaces and Their Influence on User's Performance
,”
IEEE Trans. Biomed. Eng.
,
67
(
12
), pp.
3438
3451
.
2.
Borro
,
D.
,
Savall
,
J.
,
Amundarain
,
A.
,
Gil
,
J. J.
,
Garcia-Alonso
,
A.
, and
Matey
,
L.
,
2004
, “
A Large Haptic Device for Aircraft Engine Maintainability
,”
IEEE Comput. Graphics Appl.
,
24
(
6
), pp.
70
74
.
3.
Najmaei
,
N.
,
Asadian
,
A.
,
Kermani
,
M. R.
, and
Patel
,
R. V.
,
2016
, “
Design and Performance Evaluation of a Prototype MRF-Based Haptic Interface for Medical Applications
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
110
121
.
4.
Van der Linde
,
R. Q.
,
Lammertse
,
P.
,
Frederiksen
,
E.
, and
Ruiter
,
B.
,
2002
, “
The HapticMaster, a New High-Performance Haptic Interface
,”
Eurohaptics Proc UK
,
Edinburgh, UK
,
July 8–10
, pp.
1
5
.
5.
Zareinia
,
K.
,
Maddahi
,
Y.
,
Ng
,
C.
,
Sepehri
,
N.
, and
Sutherland
,
G. R.
,
2015
, “
Performance Evaluation of Haptic Hand-Controllers in a Robot-Assisted Surgical System
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
11
(
4
), pp.
486
501
.
6.
Jin
,
L.
,
Duan
,
X.
,
Li
,
C.
,
Shi
,
Q.
,
Wen
,
H.
,
Wang
,
J.
, and
Li
,
H.
,
2021
, “
Design of a Novel Parallel Mechanism for Haptic Device
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
045001
.
7.
Wang
,
Z.
,
Zhang
,
W. X.
, and
Ding
,
X.
,
2022
, “
Design and Analysis of a Novel Metamorphic Remote-Centre-of-Motion Mechanism With Parallelogram Joints
,”
Mech. Mach. Theory
,
176
, p.
105038
.
8.
Abeywardena
,
S.
, and
Chen
,
C.
,
2017
, “
Implementation and Evaluation of a Three-Legged Six-Degrees-of-Freedom Parallel Mechanism as an Impedance-Type Haptic Device
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1412
1422
.
9.
Faulring
,
E. L.
,
Colgate
,
J. E.
, and
Peshkin
,
M. A.
,
2006
, “
The Cobotic Hand Controller: Design, Control and Performance of a Novel Haptic Display
,”
Int. J. Rob. Res.
,
25
(
11
), pp.
1099
1119
.
10.
Arata
,
J.
,
Kondo
,
H.
,
Sakaguchi
,
M.
, and
Fujimoto
,
H.
,
2009
, “
A Haptic Device DELTA-4: Kinematics and Its Analysis
,”
Third Joint EuroHaptics Conference Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
July 8–10
, IEEE, pp.
452
457
.
11.
Bong
,
J. H.
,
Choi
,
S.
,
Hong
,
J.
, and
Park
,
S.
,
2022
, “
Force Feedback Haptic Interface for Bilateral Teleoperation of Robot Manipulation
,”
Microsyst. Technol.
,
28
(
10
), pp.
2381
2392
.
12.
Frazelle
,
C. G.
,
Kapadia
,
A.
, and
Walker
,
I.
,
2018
, “
Developing a Kinematically Similar Master Device for Extensible Continuum Robot Manipulators
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025005
.
13.
Hwang
,
Y. H.
,
Kang
,
S. R.
,
Cha
,
S. W.
, and
Choi
,
S. B.
,
2019
, “
A Robot-Assisted Cutting Surgery of Human-Like Tissues Using a Haptic Master Operated by Magnetorheological Clutches and Brakes
,”
Smart Mater. Struct.
,
28
(
6
), p.
065016
.
14.
Saafi
,
H.
, and
Lamine
,
H.
,
2020
, “
Comparative Kinematic Analysis and Design Optimization of Redundant and Nonredundant Planar Parallel Manipulators Intended for Haptic Use
,”
Robotica
,
38
(
8
), pp.
1463
1477
.
15.
Iijima
,
T.
,
Matsunaga
,
T.
,
Shimono
,
T.
,
Ohnishi
,
K.
,
Usuda
,
S.
, and
Kawana
,
H.
,
2020
, “
Development of a Multi DOF Haptic Robot for Dentistry and Oral Surgery
,”
IEEE/SICE International Symposium on System Integration (SII)
,
Honolulu, HI
,
Dec. 14–16
, pp.
52
57
.
16.
Nayyeri
,
P.
,
Conrad-Baldwin
,
E.
, and
Zareinia
,
K.
,
2023
, “
Design and Development of a Novel Haptic Device for Plucked Musical Instrument AR Simulation
,”
Annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
,
Regina, Canada
,
Sept. 24–27
.
17.
Formaglio
,
A.
,
Fei
,
M.
,
Mulatto
,
S.
,
de Pascale
,
M.
, and
Prattichizzo
,
D.
,
2008
, “
Autocalibrated Gravity Compensation for 3DoF Impedance Haptic Devices
,”
Sixth EuroHaptics International Conference
,
Madrid, Spain
,
July 2–4
, Vol. 5024, pp.
43
52
.
18.
Chheta
,
Y. R.
,
Joshi
,
R. M.
,
Gotewal
,
K. K.
, and
ManoahStephen
,
M.
,
2017
, “
A Review on Passive Gravity Compensation
,”
International Conference of Electronics, Communication and Aerospace Technology (ICECA)
,
Coimbatore, India
,
Apr. 20–22
, IEEE, pp.
184
189
.
19.
Arata
,
J.
,
Kondo
,
H.
,
Ikedo
,
N.
, and
Fujimoto
,
H.
,
2011
, “
Haptic Device Using a Newly Developed Redundant Parallel Mechanism
,”
IEEE Trans. Rob.
,
27
(
2
), pp.
201
214
.
20.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
21.
Hur
,
S. M.
,
Park
,
J.
,
Park
,
J.
, and
Oh
,
Y.
,
2020
, “
Design of a Parallel Haptic Device With Gravity Compensation by Using Its System Weight
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Online
,
May 31–June 15
, pp.
11103
11108
.
22.
Li
,
J. R.
,
Fu
,
J. L.
,
Wu
,
S. C. A.
, and
Wang
,
Q. H.
,
2021
, “
An Active and Passive Combined Gravity Compensation Approach for a Hybrid Force Feedback Device
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
19
), pp.
4368
4381
.
23.
Arakelian
,
V.
, and
Zhang
,
Y.
,
2019
, “
An Improved Design of Gravity Compensators Based on the Inverted Slider-Crank Mechanism
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
034501
.
24.
Kim
,
C. K.
,
Chung
,
D. G.
,
Hwang
,
M.
,
Cheon
,
B.
,
Kim
,
H.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2019
, “
Three-Degrees-of-Freedom Passive Gravity Compensation Mechanism Applicable to Robotic Arm With Remote Center of Motion for Minimally Invasive Surgery
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3473
3480
.
25.
Rosyid
,
A.
,
El-Khasawneh
,
B.
, and
Alazzam
,
A.
,
2020
, “
Gravity Compensation of Parallel Kinematics Mechanism With Revolute Joints Using Torsional Springs
,”
Mech. Based Des. Struct. Mach.
,
48
(
1
), pp.
27
47
.
26.
Jin
,
L. X.
,
Lai
,
Q. B.
,
Ma
,
R.
,
Zhang
,
W. J.
,
Duan
,
X. G.
, and
Li
,
C. S.
,
2022
, “
Zero-Free-Length Elastic System for Gravity Compensation of Parallel Mechanisms With Delta and Delta-Like Architectures
,”
ASME J. Mech. Des.
,
144
(
11
), p.
113301
.
27.
Jin
,
L. X.
,
Duan
,
X. G.
,
He
,
R.
,
Meng
,
F. S.
, and
Li
,
C. S.
,
2022
, “
Improving the Force Display of Haptic Device Based on Gravity Compensation for Surgical Robotics
,”
Machines
,
10
(
10
), p.
903
.
28.
Zhao
,
Y.
,
Cao
,
Y.
,
Kong
,
X.
, and
Zhao
,
T.
,
2018
, “
Type Synthesis of Parallel Mechanisms With a Constant Jacobian Matrix
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061011
.
You do not currently have access to this content.