Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Ground reaction forces (GRFs) are a critical component of legged locomotion, and controlling their direction leads to more stable, efficient, and robust performance. The novelty of this work is to studying passive proximal joint (hips/shoulders) compliance for the purpose of redirecting the GRF passively. Previous works have redirected the GRF actively or studied passive proximal joint compliance for purposes such as swing phase efficiency, but passive methods of stance-phase GRF redirection are under-developed. This paper analyzes the relationship between hip compliance and the GRF direction analytically and with simulations of a trotting quadruped. The results show increased GRF redirection, on average, with increased joint stiffness, for a range of cases. An example method of utilizing this relationship to improve locomotion performance is presented by simulating online compliance adaptation. By adapting the compliance parameter during locomotion, the cost of locomotion was reduced toward the known minimum within the parameter space explored. These results support the conclusion that adjusting the hip compliance provides a passive way of redirecting the GRF, which leads to improved locomotion performance. Other systems can utilize this knowledge to passively improve their own performance.

References

1.
Sharbafi
,
M. A.
,
Maufroy
,
C.
,
Ahmadabadi
,
M. N.
,
Yazdanpanah
,
M. J.
, and
Seyfarth
,
A.
,
2013
, “
Robust Hopping Based on Virtual Pendulum Posture Control
,”
Bioinspir. Biomim.
,
8
(
3
), p.
036002
.
2.
Drama
,
O.
, and
Badri-Sprowitz
,
A.
,
2019
, “
Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots
,”
2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids)
,
Toronto, Canada
, pp.
531
536
.
3.
Drama
,
O.
, and
Badri-Sprowitz
,
A.
,
2020
, “
Trunk Pitch Oscillations for Energy Trade-Offs in Bipedal Running Birds and Robots
,”
Bioinspir. Biomim.
,
15
(
3
), p.
036013
.
4.
Lee
,
D. V.
, and
Meek
,
S. G.
,
2005
, “
Directionally Compliant Legs Influence the Intrinsic Pitch Behaviour of a Trotting Quadruped
,”
Proc. R. Soc. B
,
272
(
1563
), pp.
567
572
.
5.
Lee
,
D. V.
, and
Biewener
,
A. A.
,
2011
, “
BigDog-Inspired Studies in the Locomotion of Goats and Dogs
,”
Integr. Comp. Biol.
,
51
(
1
), pp.
1
13
.
6.
Meek
,
S. G.
,
Kim
,
J.
, and
Anderson
,
M.
,
2008
, “
Stability of a Trotting Quadruped Robot With Passive, Underactuated Legs
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
, pp.
347
351
.
7.
Struzik
,
A.
,
Karamanidis
,
K.
,
Lorimer
,
A.
,
Keogh
,
J. W. L.
, and
Gajewski
,
J.
,
2021
, “
Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview
,”
Appl. Bionics Biomech.
,
2021
, p.
9914278
.
8.
Blickhan
,
R.
, and
Full
,
R. J.
,
1993
, “
Similarity in Multilegged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol. A
,
173
(
5
), pp.
509
517
.
9.
Farley
,
C. T.
,
Houdijk
,
H. H. P.
,
Van Strien
,
C.
, and
Louie
,
M.
,
1998
, “
Mechanism of Leg Stiffness Adjustment for Hopping on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
,
85
(
3
), pp.
1044
1055
.
10.
Ferris
,
D. P.
,
Louie
,
M.
, and
Farley
,
C. T.
,
1998
, “
Running in the Real World: Adjusting Leg Stiffness for Different Surfaces
,”
Proc. R Soc. Lond., B.
,
265
(
1400
), pp.
989
994
.
11.
Ferris
,
D. P.
,
Liang
,
K.
, and
Farley
,
C. T.
,
1999
, “
Runners Adjust Leg Stiffness for Their First Step on a New Running Surface
,”
J. Biomech.
,
32
(
8
), pp.
787
794
.
12.
Farley
,
C. T.
, and
González
,
O.
,
1996
, “
Leg Stiffness and Stride Frequency in Human Running
,”
J. Biomech.
,
29
(
2
), pp.
181
186
.
13.
Rapoport
,
S.
,
Mizrahi
,
J.
,
Kimmel
,
E.
,
Verbitsky
,
O.
, and
Isakov
,
E.
,
2003
, “
Constant and Variable Stiffness and Damping of the Leg Joints in Human Hopping
,”
ASME J. Biomech. Eng.
,
125
(
4
), pp.
507
514
.
14.
Qiao
,
M.
,
2021
, “
Leg Joint Mechanics When Hopping at Different Frequencies
,”
J. Appl. Biomech.
,
37
(
3
), pp.
263
271
.
15.
Luo
,
Z.
,
Zhang
,
X.
,
Wang
,
J.
,
Yang
,
Y.
,
Xu
,
Y.
, and
Fu
,
W.
,
2019
, “
Changes in Ground Reaction Forces, Joint Mechanics, and Stiffness During Treadmill Running to Fatigue
,”
Appl. Sci.
,
9
(
24
), p.
5493
.
16.
Apps
,
C.
,
Sterzing
,
T.
,
O’Brien
,
T.
, and
Lake
,
M.
,
2016
, “
Lower Limb Joint Stiffness and Muscle Co-Contraction Adaptations to Instability Footwear During Locomotion
,”
J. Electromyogr. Kinesiol.
,
31
, pp.
55
62
, 12.
17.
Sekiguchi
,
Y.
,
Muraki
,
T.
,
Tanaka
,
N.
, and
Izumi
,
S.-I.
,
2015
, “
Relationship Between Activation of Ankle Muscles and Quasi-Joint Stiffness in Early and Middle Stances During Gait in Patients With Hemiparesis
,”
Gait Posture
,
42
(
3
), pp.
348
353
.
18.
Shih
,
Y.
,
Teng
,
H.-L.
, and
Powers
,
C. M.
,
2019
, “
Lower Extremity Stiffness Predicts Ground Reaction Force Loading Rate in Heel Strike Runners
,”
Med. Sci. Sports Exerc.
,
51
, pp.
1692
1697
.
19.
Lee
,
D. V.
,
Bertram
,
J. E. A.
, and
Todhunter
,
R. J.
,
1999
, “
Acceleration and Balance in Trotting Dogs
,”
J. Exp. Biol.
,
202
(
24
), pp.
3565
3573
.
20.
Lee
,
D. V.
,
Stakebake
,
E. F.
,
Walter
,
R. M.
, and
Carrier
,
D. R.
,
2004
, “
Effects of Mass Distribution on the Mechanics of Level Trotting in Dogs
,”
J. Exp. Biol.
,
207
(
10
), pp.
1715
1728
.
21.
Merkens
,
H. W.
,
Schamhardt
,
H. C.
,
Van Osch
,
G. J. V. M.
, and
Van Den Bogert
,
A. J.
,
1993
, “
Ground Reaction Force Patterns of Dutch Warmblood Horses at Normal Trot
,”
Equine Vet. J.
,
25
(
2
), pp.
134
137
.
22.
Clayton
,
H. M.
, and
Hobbs
,
S. J.
,
2019
, “
Ground Reaction Forces: The Sine Qua Non of Legged Locomotion
,”
J. Equine Vet. Sci.
,
76
(
1
), pp.
25
35
.
23.
Usherwood
,
J. R.
, and
Granatosky
,
M. C.
,
2020
, “
Limb Work and Joint Minimization Reveal an Energetic Benefit to the Elbows-Back, Knee-Forward Limb Design in Parasagittal Quadrupeds
,”
Proc. R. Soc. B
,
287
(
1940
), p.
20201517
.
24.
Herr
,
H. M.
, and
McMahon
,
T. A.
,
2000
, “
A Trotting Horse Model
,”
Int. J. Robot. Res.
,
19
(
6
), pp.
566
581
.
25.
Maus
,
H.-M.
,
Lipfert
,
S.
,
Gross
,
M.
,
Rummel
,
J.
, and
Seyfarth
,
A.
,
2010
, “
Upright Human Gait Did Not Provide a Major Mechanical Challenge for Our Ancestors
,”
Nat. Commun.
,
1
(
70
).
26.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunther
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
(
5
), pp.
649
655
.
27.
Ernst
,
M.
,
Geyer
,
H.
, and
Blickhan
,
R.
,
2009
,
Spring-Legged Locomotion on Uneven Ground: A Control Approach to Keep the Running Speed Constant
,
World Scientific
,
Singapore
, pp.
639
644
.
28.
Dai
,
H.
, and
Tedrake
,
R.
,
2012
, “
Optimizing Robust Limit Cycles for Legged Locomotion on Unknown Terrain
,”
2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
,
Maui, HI
, pp.
1207
1213
.
29.
Zhang
,
Z.
,
Fukuoka
,
Y.
, and
Kimura
,
H.
,
2004
, “
Stable Quadrupedal Running Based Spring-Loaded Two-Segment Legged on a Model
,”
IEEE International Conference on Robotics and Automation
,
New Orleans, LA
, Vol. 3, pp.
2601
2606
.
30.
Shen
,
Z.
, and
Seipel
,
J.
,
2015
, “
Animals Prefer Leg Stiffness Values That May Reduce the Energetic Cost of Locomotion
,”
J. Theor. Biol.
,
364
(
1
), pp.
433
438
.
31.
Koo
,
T.-W.
, and
Yoon
,
Y.-S.
,
1999
, “
Dynamic Instant Gait Stability Measure for Quadruped Walking Robot
,”
Robotica
,
17
(
1
), pp.
59
70
.
32.
Hardt
,
M.
, and
von Stryk
,
O.
,
2002
, “
Increasing Stability in Dynamic Gaits Using Numerical Optimization
,”
IFAC Proc. Vol.
,
35
(
1
), pp.
533
538
, 15th IFAC World Congress.
33.
Silva
,
M. F.
, and
Machado
,
J. A. T.
,
2008
, “
Kinematic and Dynamic Performance Analysis of Artificial Legged Systems
,”
Robotica
,
26
(
1
), pp.
19
39
.
34.
Lang
,
L.
,
Wang
,
J.
,
Rao
,
J.
,
Ma
,
H.
, and
Wei
,
Q.
,
2015
, “
Dynamic Stability Analysis of a Trotting Quadruped Robot Based on Switching Control
,”
Int. J. Adv. Robot. Syst.
,
12
(
12
), p.
192
.
35.
Alexander
,
R.
,
2003
,
Principles of Animal Locomotion
,
Princeton University Press
,
Princeton, NJ
.
36.
Hoyt
,
D. F.
, and
Taylor
,
C. R.
,
1981
, “
Gait and the Energetics of Locomotion in Horses
,”
Nature
,
292
(
1981
), pp.
239
240
.
37.
Wickler
,
S. J.
,
Hoyt
,
D. F.
,
Cogger
,
E. A.
, and
Hirschbein
,
M. H.
,
2000
, “
Preferred Speed and Cost of Transport: The Effect of Incline
,”
J. Exp. Biol.
,
203
(
14
), pp.
2195
2200
.
38.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2001
, “
Mechanical and Metabolic Determinants of the Preferred Step Width in Human Walking
,”
Proc.: Biol. Sci.
,
268
(
1480
), pp.
1985
1992
.
39.
Silva
,
M. F.
, and
Machado
,
J. A. T.
,
2006
, “Energy Efficiency of Quadruped Gaits,”
Climbing and Walking Robots
,
M. O.
Tokhi
,
G. S.
Virk
, and
M. A.
Hossain
, eds.,
Springer
,
Berlin Heidelberg
, pp.
735
742
.
40.
Lee
,
D. V.
,
Bertram
,
J. E. A.
,
Anttonen
,
J. T.
,
Ros
,
I. G.
,
Harris
,
S. L.
, and
Biewener
,
A. A.
,
2011
, “
A Collisional Perspective on Quadrupedal Gait Dynamics
,”
J. R. Soc. Interface
,
8
(
63
), pp.
1480
1486
.
41.
Usherwood
,
J. R.
, and
Hubel
,
T. Y.
,
2012
, “
Energetically Optimal Running Requires Torques About the Centre of Mass
,”
J. R. Soc. Interface
,
9
, pp.
2011
2015
.
42.
Blickhan
,
R.
,
1989
, “
The Spring-Mass Model for Running and Hopping
,”
J. Biomech.
,
22
(
11
), pp.
1217
1227
.
43.
Raibert
,
M. H.
,
1986
,
Legged Robots That Balance
,
MIT Press
,
Cambridge, MA
.
44.
Ahmadi
,
M.
, and
Buehler
,
M.
,
1997
, “
Stable Control of a Simulated One-Legged Running Robot With Hip and Leg Compliance
,”
IEEE Trans. Rob. Autom.
,
13
(
1
), pp.
96
104
.
45.
Rummel
,
J.
, and
Seyfarth
,
A.
,
2008
, “
Stable Running With Segmented Legs
,”
Int. J. Robot. Res.
,
27
(
8
), pp.
919
934
.
46.
Hurst
,
J. W.
,
Chestnutt
,
J. E.
, and
Rizzi
,
A. A.
,
2010
, “
The Actuator With Mechanically Adjustable Series Compliance
,”
IEEE Trans. Robot.
,
26
(
4
), pp.
597
606
.
47.
Murphy
,
K. N.
, and
Raibert
,
M. H.
,
1985
, “Trotting and Bounding in a Planar Two-Legged Model,”
Theory and Practice of Robots and Manipulators
,
A.
Morecki
,
G.
Bianchi
, and
K.
Kedzior
, eds.,
Springer
,
Boston, MA
, pp.
411
420
.
48.
Han
,
B.
,
Yi
,
H.
,
Xu
,
Z.
,
Yang
,
X.
, and
Luo
,
X.
,
2022
, “
3D-Slip Model Based Dynamic Stability Strategy for Legged Robots With Impact Disturbance Rejection
,”
Sci. Rep.
,
12
(
1
), p.
5892
.
49.
Seipel
,
J. E.
, and
Holmes
,
P.
,
2005
, “
Running in Three Dimensions: Analysis of a Point-Mass Sprung-Leg Model
,”
Int. J. Robot. Res.
,
24
(
8
), pp.
657
674
.
50.
Wensing
,
P. M.
, and
Orin
,
D. E.
,
2013
, “
High-Speed Humanoid Running Through Control With a 3D-Slip Model
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
, pp.
5134
5140
.
51.
Shen
,
Z. H.
, and
Seipel
,
J. E.
,
2012
, “
A Fundamental Mechanism of Legged Locomotion With Hip Torque and Leg Damping
,”
Bioinspir. Biomim.
,
7
(
4
), p.
046010
.
52.
Gurney
,
J.
,
Samare Filsoofi
,
A.
,
McClain
,
E.
,
Bolejack
,
C.
,
Aboufazeli
,
M.
,
Mathews
,
V. J.
, and
Meek
,
S.
,
2023
, “
UPed: A Quadruped Robot Platform to Study Directional Leg Compliance
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
015001
.
53.
Alexander
,
R. M.
,
1990
, “
Three Uses for Springs in Legged Locomotion
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
53
61
.
54.
Hutter
,
M.
,
Gehring
,
C.
,
Bloesch
,
M.
,
Hoepflinger
,
M.
, and
Siegwart
,
R.
,
2013
, “
Walking and Running With StarlETH
,”
6th International Symposium on Adaptive Motion of Animals and Machines (AMAM)
,
Darmstadt, Germany
.
55.
Papadopoulos
,
D.
, and
Buehler
,
M.
,
2000
, “
Stable Running in a Quadruped Robot With Compliant Legs
,” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings, Vol.
1
, pp.
444
449
.
56.
Aoustin
,
Y.
,
Formal’sky
,
A.
, and
Chevallereau
,
C.
,
2007
, “
Virtual Quadruped: Mechanical Design, Control, Simulation, and Experimentation
,”
J. Math. Sci.
,
147
(
2
), pp.
6552
6568
.
57.
McMahon
,
T. A.
, and
Greene
,
P. R.
,
1979
, “
The Influence of Track Compliance on Running
,”
J. Biomech.
,
12
(
12
), pp.
893
904
.
58.
Kerdok
,
A. E.
,
Biewener
,
A. A.
,
McMahon
,
T. A.
,
Weyand
,
P. G.
, and
Herr
,
H. M.
,
2002
, “
Energetics and Mechanics of Human Running on Surfaces of Different Stiffnesses
,”
J. Appl. Physiol.
,
92
(
2
), pp.
469
478
.
59.
Lee
,
D. V.
, and
Harris
,
S. L.
,
2018
, “
Linking Gait Dynamics to Mechanical Cost of Legged Locomotion
,”
Front. Robot. AI
,
5
, p.
111
.
60.
Koco
,
E.
,
Mutka
,
A.
, and
Kovacic
,
Z.
,
2016
, “
New Variable Passive-Compliant Element Design for Quadruped Adaptation to Stiffness-Varying Terrain
,”
Int. J. Adv. Robot. Syst.
,
13
(
3
), p.
90
.
You do not currently have access to this content.