Abstract

In the narrow and irregular environment of the ruins, the existing rescue robots are struggling to achieve their performance. Inspired by the process of termite predation by giant anteaters, we propose a soft rescue robot that utilizes motion propulsion similar to gear meshing and the adaptability of a continuum manipulator. The robot, consisting of a soft continuum manipulator and driving equipment, has the characteristics of fast propulsion and adaptation to unstructured environments. The driving device can give the manipulator a maximum speed of 14.67 cm/s and a propulsive force of 19.20 N. With the flexibility of the soft robot, the soft manipulator can adapt to the environment under propulsion to pass obstacles. The experiments of self-adaptability performance tests under different conditions show that the robot can pass over obstacles with an angle of up to 80.57 deg between its axis and the contact surface. In the actual ruin experiment, the robot could penetrate 1.3 m deep in the narrow passage formed by the bricks with the mode. The experiment indicates the presented rescue robot design's feasibility. Our work could contribute to the research on the interaction of soft robots with their environment.

References

1.
Zhai
,
G.
,
Zhang
,
W.
,
Hu
,
W.
, and
Ji
,
Z.
,
2020
, “
Coal Mine Rescue Robots Based on Binocular Vision: A Review of the State of the Art
,”
IEEE Access
,
8
, pp.
130561
130575
.
2.
Reddy
,
A. H.
,
Kalyan
,
B.
, and
Murthy
,
C. S. N.
,
2015
, “
Mine Rescue Robot System—A Review
,”
Proc. Earth Planet. Sci.
,
11
, pp.
457
462
.
3.
Zhao
,
J.
,
Gao
,
J.
,
Zhao
,
F.
, and
Liu
,
Y.
,
2017
, “
A Search-and-Rescue Robot System for Remotely Sensing the Underground Coal Mine Environment
,”
Sensors
,
17
(
10
), p.
2426
.
4.
Delmerico
,
J.
,
Mintchev
,
S.
,
Giusti
,
A.
,
Gromov
,
B.
,
Melo
,
K.
,
Horvat
,
T.
,
Cadena
,
C.
, et al.,
2019
, “
The Current State and Future Outlook of Rescue Robotics
,”
J. Field Rob.
,
36
(
7
), pp.
1171
1191
.
5.
Sun
,
Z.
,
Yang
,
H.
,
Ma
,
Y.
,
Wang
,
X.
,
Mo
,
Y.
,
Li
,
H.
, and
Jiang
,
Z.
,
2022
, “
BIT-DMR: A Humanoid Dual-Arm Mobile Robot for Complex Rescue Operations
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
802
809
.
6.
Zhao
,
N.
,
Lu
,
W.
,
Sheng
,
M.
,
Chen
,
Y.
,
Tang
,
J.
,
Yu
,
F. R.
, and
Wong
,
K.-K.
,
2019
, “
UAV-Assisted Emergency Networks in Disasters
,”
IEEE Wireless Commun.
,
26
(
1
), pp.
45
51
.
7.
Shakhatreh
,
H.
,
Sawalmeh
,
A. H.
,
Al-Fuqaha
,
A.
,
Dou
,
Z.
,
Almaita
,
E.
,
Khalil
,
I.
,
Othman
,
N. S.
,
Khreishah
,
A.
, and
Guizani
,
M.
,
2019
, “
Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges
,”
IEEE Access
,
7
, pp.
48572
48634
.
8.
Qadir
,
Z.
,
Ullah
,
F.
,
Munawar
,
H. S.
, and
Al-Turjman
,
F.
,
2021
, “
Addressing Disasters in Smart Cities Through UAVs Path Planning and 5G Communications: A Systematic Review
,”
Comput. Commun.
,
168
, pp.
114
135
.
9.
Mozaffari
,
M.
,
Saad
,
W.
,
Bennis
,
M.
,
Nam
,
Y.-H.
, and
Debbah
,
M.
,
2019
, “
A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems
,”
IEEE Commun. Surv. Tutor.
,
21
(
3
), pp.
2334
2360
.
10.
Al-Naji
,
A.
,
Perera
,
A. G.
,
Mohammed
,
S. L.
, and
Chahl
,
J.
,
2019
, “
Life Signs Detector Using a Drone in Disaster Zones
,”
Remote Sens.
,
11
(
20
), p.
2441
.
11.
Han
,
S.
,
Chon
,
S.
,
Kim
,
J. Y.
,
Seo
,
J.
,
Shin
,
D. G.
,
Park
,
S.
,
Kim
,
J. T.
,
Kim
,
J.
,
Jin
,
M.
, and
Cho
,
J.
,
2022
, “
Snake Robot Gripper Module for Search and Rescue in Narrow Spaces
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1667
1673
.
12.
Liu
,
J.
,
Tong
,
Y.
, and
Liu
,
J.
,
2021
, “
Review of Snake Robots in Constrained Environments
,”
Rob. Auton. Syst.
,
141
, p.
103785
.
13.
Runciman
,
M.
,
Darzi
,
A.
, and
Mylonas
,
G. P.
,
2019
, “
Soft Robotics in Minimally Invasive Surgery
,”
Soft Rob.
,
6
(
4
), pp.
423
443
.
14.
Abidi
,
H.
,
Gerboni
,
G.
,
Brancadoro
,
M.
,
Fras
,
J.
,
Diodato
,
A.
,
Cianchetti
,
M.
,
Wurdemann
,
H.
,
Althoefer
,
K.
, and
Menciassi
,
A.
,
2018
, “
Highly Dexterous 2-Module Soft Robot for Intra-Organ Navigation in Minimally Invasive Surgery
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
14
(
1
), p.
e1875
.
15.
Gifari
,
M. W.
,
Naghibi
,
H.
,
Stramigioli
,
S.
, and
Abayazid
,
M.
,
2019
, “
A Review on Recent Advances in Soft Surgical Robots for Endoscopic Applications
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
15
(
5
), p.
e2010
.
16.
Lee
,
K.-H.
,
Fu
,
D. K. C.
,
Leong
,
M. C. W.
,
Chow
,
M.
,
Fu
,
H.-C.
,
Althoefer
,
K.
,
Sze
,
K. Y.
,
Yeung
,
C.-K.
, and
Kwok
,
K.-W.
,
2017
, “
Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation
,”
Soft Rob.
,
4
(
4
), pp.
324
337
.
17.
Zhang
,
D.
,
Yuan
,
H.
, and
Cao
,
Z.
,
2020
, “
Environmental Adaptive Control of a Snake-Like Robot With Variable Stiffness Actuators
,”
IEEE/CAA J. Autom. Sin.
,
7
(
3
), pp.
745
751
.
18.
Qin
,
G.
,
Ji
,
A.
,
Cheng
,
Y.
,
Zhao
,
W.
,
Pan
,
H.
,
Shi
,
S.
,
Song
,
Y.
,
2021
, “
A Snake-Inspired Layer-Driven Continuum Robot
,”
Soft Rob.
,
9
(
4
),
788
797
.
19.
Kurumaya
,
S.
,
Phillips
,
B. T.
,
Becker
,
K. P.
,
Rosen
,
M. H.
,
Gruber
,
D. F.
,
Galloway
,
K. C.
,
Suzumori
,
K.
, and
Wood
,
R. J.
,
2018
, “
A Modular Soft Robotic Wrist for Underwater Manipulation
,”
Soft Rob.
,
5
(
4
), pp.
399
409
.
20.
Gong
,
Z.
,
Fang
,
X.
,
Chen
,
X.
,
Cheng
,
J.
,
Xie
,
Z.
,
Liu
,
J.
,
Chen
,
B.
, et al
,
2020
, “
A Soft Manipulator for Efficient Delicate Grasping in Shallow Water: Modeling, Control, and Real-World Experiments
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
449
469
.
21.
Hawkes
,
E. W.
,
Blumenschein
,
L. H.
,
Greer
,
J. D.
, and
Okamura
,
A. M.
,
2017
, “
A Soft Robot That Navigates Its Environment Through Growth
,”
Sci. Rob.
,
2
(
8
), p.
eaan3028
.
22.
Talas
,
S. K.
,
Baydere
,
B. A.
,
Altinsoy
,
T.
,
Tutcu
,
C.
, and
Samur
,
E.
,
2020
, “
Design and Development of a Growing Pneumatic Soft Robot
,”
Soft Rob.
,
7
(
4
), pp.
521
533
.
23.
Singh
,
G.
, and
Krishnan
,
G.
,
2020
, “
Designing Fiber-Reinforced Soft Actuators for Planar Curvilinear Shape Matching
,”
Soft Rob.
,
7
(
1
), pp.
109
121
.
24.
Connolly
,
F.
,
Walsh
,
C. J.
, and
Bertoldi
,
K.
,
2016
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci. USA
,
114
(
1
), pp.
51
56
.
25.
Chen
,
C.
,
Tang
,
W.
,
Hu
,
Y.
,
Lin
,
Y.
, and
Zou
,
J.
,
2020
, “
Fiber-Reinforced Soft Bending Actuator Control Utilizing On/Off Valves
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
6732
6739
.
26.
Jadhav
,
S.
,
Majit
,
M. R. A.
,
Shih
,
B.
,
Schulze
,
J. P.
, and
Tolley
,
M. T.
,
2022
, “
Variable Stiffness Devices Using Fiber Jamming for Application in Soft Robotics and Wearable Haptics
,”
Soft Rob.
,
9
(
1
), pp.
173
186
.
27.
Brown
,
E.
,
Rodenberg
,
N.
,
Amend
,
J.
,
Mozeika
,
A.
,
Steltz
,
E.
,
Zakin
,
M. R.
,
Lipson
,
H.
, and
Jaeger
,
H. M.
,
2010
, “
Universal Robotic Gripper Based on the Jamming of Granular Material
,”
Proc. Natl. Acad. Sci. USA
,
107
(
44
), pp.
18809
18814
.
28.
Feng
,
N.
,
Wang
,
H.
,
Hu
,
F.
,
Gouda
,
M. A.
,
Gong
,
J.
, and
Wang
,
F.
,
2019
, “
A Fiber-Reinforced Human-Like Soft Robotic Manipulator Based on sEMG Force Estimation
,”
Eng. Appl. Artif. Intell.
,
86
, pp.
56
67
.
29.
Hu
,
J.
,
Xiao
,
C.
, and
Wen
,
T.
,
2021
, “
A Novel Tunable Stiffness Mechanism Using Filament Jamming
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061015
.
30.
Brancadoro
,
M.
,
Manti
,
M.
,
Tognarelli
,
S.
, and
Cianchetti
,
M.
,
2020
, “
Fiber Jamming Transition as a Stiffening Mechanism for Soft Robotics
,”
Soft Rob.
,
7
(
6
), pp.
663
674
.
31.
Seleem
,
I. A.
,
Assal
,
S. F. M.
,
Ishii
,
H.
, and
El-Hussieny
,
H.
,
2019
, “
Demonstration-Guided Pose Planning and Tracking for Multi-Section Continuum Robots Considering Robot Dynamics
,”
IEEE Access
,
7
, pp.
166690
166703
.
32.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
.
33.
Garriga-Casanovas
,
A.
, and
Rodriguez y Baena
,
F.
,
2019
, “
Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011010
.
34.
Xiao
,
Q.
,
Musa
,
M.
,
Godage
,
I. S.
,
Su
,
H.
, and
Chen
,
Y.
,
2022
, “
Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051011
.
35.
Liu
,
Y.
,
Zhuang
,
G.
,
Yang
,
S.
,
Walker
,
I. D.
, and
Ju
,
Z.
,
2019
, “
Elephant’s Trunk Robot: an Extremely Versatile Under-Actuated Continuum Robot Driven by a Single Motor
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051008
.
36.
Wang
,
Z.
,
Bao
,
S.
,
Zi
,
B.
,
Jia
,
Z.
, and
Yu
,
X.
,
2023
, “
Development of a Novel 4-DOF Flexible Endoscopic Robot Using Cable-Driven Multisegment Continuum Mechanisms
,”
ASME J. Mech. Rob.
,
16
(
3
), p.
031011
.
You do not currently have access to this content.