Abstract

The unique structural characteristics of hybrid robots, such as few degrees-of-freedom (DOF) and redundant constraints, lead to a series of challenges in the establishment of theoretical models. However, these theoretical models are indispensable parts of motion control. Therefore, this paper focuses on establishing the kinematics, dynamics, and stiffness models for an Exechon-like hybrid robot, which are then used for error compensation and velocity planning to improve the robot’s motion performance. First, the kinematic model is derived through intermediate parameters and the kinematics equivalent chains. By analyzing the parasitic motion due to few DOF, the redundant equations in the model are eliminated to obtain the solution of inverse kinematics. Second, based on the beam element, the optimal equivalent configuration of the moving platform which connects the parallel part and serial part is determined, and then an entire equivalent structure of the robot is formed. It helps establish the stiffness model by using the matrix structure analysis method. Next, the dynamic model is established by combining the Newton–Euler method with co-deformation theory to solve the underdetermined dynamic equations caused by redundant constraints. Finally, the compensation method is designed based on the stiffness model and kinematic model to improve the end positioning accuracy of the robot; the velocity planning algorithm is designed based on the dynamic model and kinematic model to enhance the smoothness of the robot motion. The methods proposed in this paper are also of referential significance to other Exechon-like hybrid robots.

References

1.
Shi
,
M.
,
Qin
,
X.
,
Li
,
H.
,
Shang
,
S.
,
Jin
,
Y.
, and
Huang
,
T.
,
2020
, “
Cutting Force and Chatter Stability Analysis for PKM-Based Helical Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
111
(
11–12
), pp.
3207
3224
.
2.
Kim
,
J.
, and
Croft
,
E. A.
,
2019
, “
Online Near Time-Optimal Trajectory Planning for Industrial Robots
,”
Robot. Comput.-Integr. Manuf.
,
58
, pp.
158
171
.
3.
Li
,
J.
,
Yu
,
H.
,
Shen
,
N.
,
Zhong
,
Z.
,
Lu
,
Y.
, and
Fan
,
J.
,
2021
, “
A Novel Inverse Kinematics Method for 6-DOF Robots With Non-Spherical Wrist
,”
Mech. Mach. Theory
,
157
, p.
104180
.
4.
Morozov
,
M.
,
Pierce
,
S. G.
,
MacLeod
,
C. N.
,
Mineo
,
C.
, and
Summan
,
R.
,
2018
, “
Off-Line Scan Path Planning for Robotic NDT
,”
Measurement
,
122
, pp.
284
290
.
5.
Rea Minango
,
S. N.
and
Ferreira
,
J. C. E
,
2017
, “
Combining the STEP-NC Standard and Forward and Inverse Kinematics Methods for Generating Manufacturing Tool Paths for Serial and Hybrid Robots
,”
Int. J. Comput. Integr. Manuf.
,
30
(
11
), pp.
1203
1223
.
6.
Rao
,
G.
,
Wang
,
G.
,
Yang
,
X.
,
Xu
,
J.
, and
Chen
,
K.
,
2018
, “
Normal Direction Measurement and Optimization With a Dense Three-Dimensional Point Cloud in Robotic Drilling
,”
IEEE/ASME Trans. Mechatron.
,
23
(
3
), pp.
986
996
.
7.
Gao
,
Y.
,
Wu
,
D.
,
Dong
,
Y.
,
Ma
,
X.
, and
Chen
,
K.
,
2017
, “
The Method of Aiming Towards the Normal Direction for Robotic Drilling
,”
Int. J. Precis. Eng. Manuf.
,
18
(
6
), pp.
787
794
.
8.
Verl
,
A.
,
Valente
,
A.
,
Melkote
,
S.
,
Brecher
,
C.
,
Ozturk
,
E.
, and
Tunc
,
L. T.
,
2019
, “
Robots in Machining
,”
CIRP Ann.
,
68
(
2
), pp.
799
822
.
9.
Nguyen
,
V.
, and
Melkote
,
S.
,
2021
, “
Hybrid Statistical Modelling of the Frequency Response Function of Industrial Robots
,”
Robot. Comput.-Integr. Manuf.
,
70
, p.
102134
.
10.
Lei
,
Y.
,
Hou
,
T.
, and
Ding
,
Y.
,
2023
, “
Prediction of the Posture-Dependent Tool Tip Dynamics in Robotic Milling Based on Multi-task Gaussian Process Regressions
,”
Robot. Comput.-Integr. Manuf.
,
81
, p.
102508
.
11.
Wu
,
J.
,
Yu
,
G.
,
Gao
,
Y.
, and
Wang
,
L.
,
2018
, “
Mechatronics Modeling and Vibration Analysis of a 2-DOF Parallel Manipulator in a 5-DOF Hybrid Machine Tool
,”
Mech. Mach. Theory
,
121
, pp.
430
445
.
12.
Shen
,
N.
,
Guo
,
Z.
,
Li
,
J.
,
Tong
,
L.
, and
Zhu
,
K.
,
2018
, “
A Practical Method of Improving Hole Position Accuracy in the Robotic Drilling Process
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2973
2987
.
13.
Gonzalez
,
M. K.
,
Theissen
,
N. A.
,
Barrios
,
A.
, and
Archenti
,
A.
,
2022
, “
Online Compliance Error Compensation System for Industrial Manipulators in Contact Applications
,”
Robot. Comput.-Integr. Manuf.
,
76
, p.
102305
.
14.
Huang
,
T.
,
Zhao
,
D.
,
Yin
,
F.
,
Tian
,
W.
, and
Chetwynd
,
D. G.
,
2019
, “
Kinematic Calibration of a 6-DOF Hybrid Robot by Considering Multicollinearity in the Identification Jacobian
,”
Mech. Mach. Theory
,
131
, pp.
371
384
.
15.
He
,
J.
,
Ding
,
Q.
,
Gao
,
F.
, and
Zhang
,
H.
,
2020
, “
Kinematic Calibration Methodology of Hybrid Manipulator Containing Parallel Topology With Main Limb
,”
Measurement
,
152
, p.
107334
.
16.
Heng
,
M.
, and
Erkorkmaz
,
K.
,
2010
, “
Design of a NURBS Interpolator With Minimal Feed Fluctuation and Continuous Feed Modulation Capability
,”
Int. J. Mach. Tools Manuf.
,
50
(
3
), pp.
281
293
.
17.
Luo
,
X.
,
2018
, “
An Optimal Trajectory Planning Method for Path Tracking of Industrial Robots
,”
Robotica
,
38
(
3
), pp.
502
520
.
18.
Abu-Dakka
,
F. J.
,
Assad
,
I. F.
,
Alkhdour
,
R. M.
, and
Abderahim
,
M.
,
2017
, “
Statistical Evaluation of an Evolutionary Algorithm for Minimum Time Trajectory Planning Problem for Industrial Robots
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
389
406
.
19.
Wu
,
J.
,
Ye
,
H.
,
Yu
,
G.
, and
Huang
,
T.
,
2022
, “
A Novel Dynamic Evaluation Method and Its Application to a 4-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
168
, p.
104627
.
20.
Liu
,
Q.
, and
Huang
,
T.
,
2019
, “
Inverse Kinematics of a 5-Axis Hybrid Robot With Non-Singular Tool Path Generation
,”
Robot. Comput.-Integr. Manuf.
,
56
, pp.
140
148
.
21.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2011
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Robot. Comput.-Integr. Manuf.
,
27
(
1
), pp.
186
193
.
22.
Dong
,
C.
,
Liu
,
H.
,
Yue
,
W.
, and
Huang
,
T.
,
2018
, “
Stiffness Modeling and Analysis of a Novel 5-DOF Hybrid Robot
,”
Mech. Mach. Theory
,
125
, pp.
80
93
.
23.
Zhang
,
J.
, and
Zhao
,
Z.
,
2016
, “
Stiffness Modeling and Evaluation for Exechon Parallel Kinematic Machine Module
,”
J. Mech. Eng.
,
52
(
19
), pp.
35
41
.
24.
Wang
,
X.
,
Wu
,
J.
, and
Wang
,
Y.
,
2021
, “
Dynamics Evaluation of 2UPU/SP Parallel Mechanism for a 5-DOF Hybrid Robot Considering Gravity
,”
Rob. Auton. Syst.
,
135
, p.
103675
.
25.
Bi
,
Z. M.
, and
Kang
,
B.
,
2014
, “
An Inverse Dynamic Model of Over-Constrained Parallel Kinematic Machine Based on Newton–Euler Formulation
,”
ASME J. Dyn. Syst. Meas. Contr.
,
136
(
4
), p.
041001
.
26.
Li
,
J.
,
Ye
,
F.
,
Shen
,
N.
,
Wang
,
Z.
, and
Geng
,
L.
,
2020
, “
Dimensional Synthesis of a 5-DOF Hybrid Robot
,”
Mech. Mach. Theory
,
150
, p.
103865
.
27.
Herrero
,
S.
,
Pinto
,
C.
,
Diez
,
M.
, and
Corral
,
J.
,
2019
, “
Analytical Procedure Based on the Matrix Structural Method for the Analysis of the Stiffness of the 2PRU–1PRS Parallel Manipulator
,”
Robotica
,
37
(
8
), pp.
1401
1414
.
28.
Song
,
Y.
,
Wu
,
J.
,
Yu
,
G.
, and
Huang
,
T.
,
2020
, “
Dynamic Characteristic Prediction of a 5-DOF Hybrid Machine Tool by Using Scale Model Considering the Geometric Distortion of Bearings
,”
Mech. Mach. Theory
,
145
, p.
103679
.
29.
Klimchik
,
A.
,
Pashkevich
,
A.
, and
Chablat
,
D.
,
2019
, “
Fundamentals of Manipulator Stiffness Modeling Using Matrix Structural Analysis
,”
Mech. Mach. Theory
,
133
, pp.
365
394
.
30.
Shen
,
N.
,
Yuan
,
H.
,
Li
,
J.
,
Wang
,
Z.
,
Lu
,
N.
, and
Lu
,
Y.
,
2023
, “
Dynamic Modeling and Simulation of a Hybrid Robot
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011012
.
31.
Wang
,
Z.
,
2022
, “
Positioning Accuracy Analysis and Experimental Research of a 5-DOF Hybrid Robot
,”
Master’s dissertation
,
Shanghai University
,
Shanghai, China
.
You do not currently have access to this content.