Abstract

Humans are intrinsically unstable in quiet stance from a rigid body system viewpoint; however, they maintain balance, thanks to neuro-muscular sensory control properties. With increasing levels of balance related incidents in industrial and ageing populations globally each year, the development of assistive mechanisms to augment human balance is paramount. This work investigates the mechanical characteristics of kinematically dissimilar one and two degrees-of-freedom (DoF) supernumerary robotic tails for balance augmentation. Through dynamic simulations and manipulability assessments, the importance of variable coupling inertia in creating a sufficient reaction torque is highlighted. It is shown that two-DoF tails with solely revolute joints are best suited to address the balance augmentation issue. Within the two-DoF options, the characteristics of open versus closed loop tails are investigated, with the ultimate design selection requiring trade-offs between environmental workspace, biomechanical factors, and manufacturing ease to be made.

References

1.
World Health Organisation
,
2021
, “
Step Safely: Strategies for Preventing and Managing Falls Across the Life Course
,” https://www.who.int/publications/i/item/978924002191-4
2.
Park
,
J. H.
,
Kim
,
S.
,
Nussbaum
,
M. A.
, and
Srinivasan
,
D.
,
2021
, “
Effects of Two Passive Back-Support Exoskeletons on Postural Balance During Quiet Stance and Functional Limits of Stability
,”
J. Electromyogr. Kinesiol.
,
57
(
1
), Article No. 102516.
3.
Maurice
,
P.
,
Čamernik
,
J.
,
Gorjan
,
D.
,
Schirrmeister
,
B.
,
Bornmann
,
J.
,
Tagliapietra
,
L.
,
Latella
,
C.
,
Pucci
,
D.
,
Fritzsche
,
L.
,
Ivaldi
,
S.
, and
Babič
,
J.
,
2020
, “
Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
1
), pp.
152
164
.
4.
Monaco
,
V.
,
Tropea
,
P.
,
Aprigliano
,
F.
,
Martelli
,
D.
,
Parri
,
A.
,
Cortese
,
M.
,
Molino-Lova
,
R.
,
Vitiello
,
N.
, and
Micera
,
S.
,
2017
, “
An Ecologically-Controlled Exoskeleton Can Improve Balance Recovery After Slippage
,”
Sci. Rep.
,
7
(
1
), Article No. 46721.
5.
Zhang
,
T.
,
Tran
,
M.
, and
Huang
,
H.
,
2018
, “
Design and Experimental Verification of Hip Exoskeleton With Balance Capacities for Walking Assistance
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
274
285
.
6.
Farkhatdinov
,
I.
,
Ebert
,
J.
,
van Oort
,
G.
,
Vlutters
,
M.
,
van Asseldonk
,
E.
, and
Burdet
,
E.
,
2019
, “
Assisting Human Balance in Standing With a Robotic Exoskeleton
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
414
421
.
7.
Hao
,
M.
,
Zhang
,
J.
,
Chen
,
K.
,
Asada
,
H.
, and
Fu
,
C.
,
2020
, “
Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061014
.
8.
Khazoom
,
C.
,
Caillouette
,
P.
,
Girard
,
A.
, and
Plante
,
J.-S.
,
2020
, “
A Supernumerary Robotic Leg Powered by Magnetorheological Actuators to Assist Human Locomotion
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5143
5150
.
9.
Gonzalez
,
D. J.
, and
Asada
,
H. H.
,
2019
, “
Hybrid Open-Loop Closed-Loop Control of Coupled Human–Robot Balance During Assisted Stance Transition With Extra Robotic Legs
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1676
1683
.
10.
Kurek
,
D. A.
, and
Asada
,
H. H.
,
2017
, “
The MantisBot: Design and Impedance Control of Supernumerary Robotic Limbs for Near-Ground Work
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
5942
5947
.
11.
Parietti
,
F.
, and
Asada
,
H.
,
2016
, “
Supernumerary Robotic Limbs for Human Body Support
,”
IEEE Trans. Rob.
,
32
(
2
), pp.
301
311
.
12.
Luo
,
J.
,
Gong
,
Z.
,
Su
,
Y.
,
Ruan
,
L.
,
Zhao
,
Y.
,
Asada
,
H. H.
, and
Fu
,
C.
,
2021
, “
Modeling and Balance Control of Supernumerary Robotic Limb for Overhead Tasks
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
4125
4132
.
13.
Romtrairat
,
P.
,
Virulsri
,
C.
, and
Tangpornprasert
,
P.
,
2019
, “
An Application of Scissored-Pair Control Moment Gyroscopes in a Design of Wearable Balance Assistance Device for the Elderly
,”
J. Biomech.
,
87
(
1
), pp.
183
188
.
14.
Lemus
,
D.
,
Berry
,
A.
,
Jabeen
,
S.
,
Jayaraman
,
C.
,
Hohl
,
K.
,
van der Helm
,
F. C. T.
,
Jayaraman
,
A.
, and
Vallery
,
H.
,
2020
, “
Controller Synthesis and Clinical Exploration of Wearable Gyroscopic Actuators to Support Human Balance
,”
Sci. Rep.
,
10
(
1
), Article No. 10412.
15.
Nabeshima
,
J.
,
Saraiji
,
M. Y.
, and
Minamizawa
,
K.
,
2019
, “
Arque: Artificial Biomimicry-Inspired Tail for Extending Innate Body Functions
,”
SIGGRAPH '19: ACM SIGGRAPH 2019 Emerging Technologies
,
Los Angeles, CA
,
July 28–Aug. 1
, pp.
1
2
.
16.
Maekawa
,
A.
,
Kawamura
,
K.
, and
Inami
,
M.
,
2020
, “
Dynamic Assistance for Human Balancing With Inertia of a Wearable Robotic Appendage
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV (Virtual)
,
Oct. 25–29
, pp.
4077
4082
.
17.
Chang-Siu
,
E.
,
Libby
,
T.
,
Tomizuka
,
M.
, and
Full
,
R. J.
,
2011
, “
A Lizard-inspired Active Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terrestrial Robot
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1887
1894
.
18.
Briggs
,
R.
,
Lee
,
J.
,
Haberland
,
M.
, and
Kim
,
S.
,
2012
, “
Tails in Biomimetic Design: Analysis, Simulation, and Experiment
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
1473
1480
.
19.
Patel
,
A.
, and
Braae
,
M.
,
2013
, “
Rapid Turning at High-Speed: Inspirations From the Cheetah’s Tail
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5506
5511
.
20.
Abeywardena
,
S.
,
Anwar
,
E.
,
Miller
,
S.
, and
Farkhatdinov
,
I.
,
2022
, “
Human Balance Augmentation Via a Supernumerary Robotic Tail
,”
2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
,
Glasgow, Scotland, UK
,
July 11–15
, pp.
2878
2881
.
21.
Peterka
,
R. J.
,
2000
, “
Postural Control Model Interpretation of Stabilogram Diffusion Analysis
,”
Biol. Cybern.
,
82
(
4
), pp.
335
343
.
22.
Gage
,
W. H.
,
Winter
,
D. A.
,
Frank
,
J. S.
, and
Adkin
,
A. L.
,
2004
, “
Kinematic and Kinetic Validity of the Inverted Pendulum Model in Quiet Standing
,”
Gait Posture
,
19
(
2
), pp.
124
132
.
23.
Morasso
,
P.
,
Cherif
,
A.
, and
Zenzeri
,
J.
,
2019
, “
Quiet Standing: The Single Inverted Pendulum Model Is Not So Bad After All
,”
PLoS One
,
14
(
3
), pp.
1
20
.
24.
National Aeronautics and Space Administration
,
2000
, “Anthropometry and Biomechanics,” https://msis.jsc.nasa.gov/sections/section03.htm#_3.3_ANTHROPOMETRIC_AND
25.
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms
, 3rd ed.,
Springer
,
Cham
.
26.
Abeywardena
,
S.
, and
Chen
,
C.
,
2017
, “
Inverse Dynamic Modelling of a Three-Legged Six-Degree-of-Freedom Parallel Mechanism
,”
Multibody Syst. Dyn.
,
41
(
1
), pp.
1
24
.
27.
Asai
,
Y.
,
Tasaka
,
Y.
,
Nomura
,
K.
,
Nomura
,
T.
,
Casadio
,
M.
, and
Morasso
,
P.
,
2009
, “
A Model of Postural Control in Quiet Standing: Robust Compensation of Delay-Induced Instability Using Intermittent Activation of Feedback Control
,”
PLoS One
,
4
(
7
), pp.
1
14
.
28.
Azad
,
M.
,
Babic
,
J.
, and
Mistry
,
M.
,
2019
, “
Effects of the Weighting Matrix on Dynamic Manipulability of Robots
,”
Auton. Rob.
,
43
(
7
), pp.
1867
1879
.
29.
Meuleman
,
J. H.
,
van Asseldonk
,
E. H.
, and
van der Kooij
,
H.
,
2013
, “
The Effect of Directional Inertias Added to Pelvis and Ankle on Gait
,”
J. NeuroEng. Rehabil.
,
10
(
1
),
Article No. 40
.
30.
Moraux
,
A.
,
Canal
,
A.
,
Ollivier
,
G.
,
Ledoux
,
I.
,
Doppler
,
V.
,
Payan
,
C.
, and
Hogrel
,
J.-Y.
,
2013
, “
Ankle Dorsi- and Plantar-Flexion Torques Measured by Dynamometry in Healthy Subjects From 5 to 80 Years
,”
BMC Musculoskelet. Disord.
,
14
(
1
), p.
104
.
31.
Tits
,
A.
, and
Yang
,
Y.
,
1996
, “
Globally Convergent Algorithms for Robust Pole Assignment by State Feedback
,”
IEEE Trans. Automat. Contr.
,
41
(
10
), pp.
1432
1452
.
32.
Wang
,
S.
,
Wang
,
L.
,
Meijneke
,
C.
,
van Asseldonk
,
E.
,
Hoellinger
,
T.
,
Cheron
,
G.
,
Ivanenko
,
Y.
, et al.,
2015
, “
Design and Control of the MINDWALKER Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
277
286
.
33.
Abeywardena
,
S.
, and
Farkhatdinov
,
I.
,
2023
, “
Towards Enhanced Stability of Human Stance With a Supernumerary Robotic Tail
,”
IEEE Robot. Automat. Lett.
,
8
(
9
), pp.
5743
5750
.
You do not currently have access to this content.