Abstract

Bifurcation behavior analysis is the key part of mobility in the application of origami-inspired deployable structures because it opens up more allosteric possibilities but leads to control difficulties. A novel tracking method for bifurcation paths is proposed based on the Jacobian matrix equations of the constraint system and its Taylor expansion equations. A Jacobian matrix equation is built based on the length, boundary, rigid plate conditions, and rotational symmetry conditions of the origami plate structures to determine the degrees-of-freedom and bifurcation points of structural motion. The high-order expansion form of the length constraint conditions is introduced to calculate the bifurcation directions. The two kinds of single-vertex four-crease patterns are adopted to verify the proposed method first. And then, the motion bifurcations of three wrapping folds are investigated and compared. The results demonstrate the rich kinematic properties of the wrap folding pattern, corresponding to different assignments of mountain and valley creases. The findings provide a numerical discrimination approach for the singularity of rigid origami structure motion trajectories, which may be used for a wide range of complicated origami plate structures.

References

1.
Nishiyama
,
Y.
,
2012
, “
Miura Folding: Applying Origami to Space Exploration
,”
Int. J. Pure Appl. Math.
,
79
(
2
), pp.
269
279
.
2.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
3.
Zhang
,
Q.
,
Zhong
,
Y.
,
Wang
,
Z.
,
Kueh
,
A. B.
,
Cai
,
J.
, and
Feng
,
J.
,
2022l
, “
Analytical Model and General Calculation Procedure for Wrinkled Membrane Parameters
,”
Int. J. Mech. Sci.
,
221
(
1
), p.
107168
.
4.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Lee
,
D. S.-H.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
3
), p.
2000636
.
5.
Overvelde
,
J.
,
De Jong
,
T.
, and
Shevchenko
,
Y.
,
2016
, “
A Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
(
1
), pp.
1
8
.
6.
Lyu
,
S.
,
Qin
,
B.
,
Deng
,
H.
, and
Ding
,
X.
,
2021
, “
Origami-Based Cellular Mechanical Metamaterials With Tunable Poisson’s Ratio: Construction and Analysis
,”
Int. J. Mech. Sci.
,
212
(
1
), p.
106791
.
7.
Ando
,
K.
,
Izumi
,
B.
, and
Shigematsu
,
M.
,
2020
, “
Lightweight Rigidly Foldable Canopy Using Composite Materials
,”
SN Appl. Sci.
,
2
(
12
), pp.
1
15
.
8.
Zhang
,
Q.
,
Wang
,
X.
,
Lee
,
D. S. H.
,
Cai
,
J.
,
Ren
,
Z.
, and
Feng
,
J.
,
2021
, “
Development of Kinetic Origami Canopy Using Arc Miura Folding Patterns
,”
J. Build. Eng.
,
43
(
1
), p.
103116
.
9.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
472
(
2185
), p.
20150607
.
10.
Miura
,
K.
,
1997
, “
Map, Origami, and Space
,”
Map J. Japan Cartogr. Assoc.
,
35
(
2
), pp.
1
10
.
11.
Gattas
,
J. M.
, and
You
,
Z.
,
2015
, “
Geometric Assembly of Rigid-Foldable Morphing Sandwich Structures
,”
Eng. Struct.
,
94
(
1
), pp.
149
159
.
12.
Gattas
,
J. M.
,
Wu
,
W.
, and
You
,
Z.
,
2013
, “
Miura-Base Rigid Origami: Parameterizations of First-Level Derivative and Piecewise Geometries
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111011
.
13.
Cai
,
J.
,
Deng
,
X.
,
Feng
,
J.
, and
Zhou
,
Y.
,
2015
, “
Geometric Design and Mechanical Behavior of a Deployable Cylinder With Miura Origami
,”
Smart Mater. Struct.
,
24
(
12
), p.
125031
.
14.
Zhang
,
Q.
,
Li
,
Y.
,
Kueh
,
A. B.
,
Qian
,
Z.
, and
Cai
,
J.
,
2022
, “
Folding Responses of Origami-Inspired Structures Connected by Groove Compliant Joints
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031010
.
15.
Gioia
,
F.
,
Dureisseix
,
D.
,
Motro
,
R.
, and
Maurin
,
B.
,
2012
, “
Design and Analysis of a Foldable/Unfoldable Corrugated Architectural Curved Envelop
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031003
.
16.
Waitukaitis
,
S.
, and
Van Hecke
,
M.
,
2016
, “
Origami Building Blocks: Generic and Special Four-Vertices
,”
Phys. Rev. E
,
93
(
2
), pp.
1
8
.
17.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G. G.
, and
Van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), pp.
2
6
.
18.
Feng
,
F.
,
Plucinsky
,
P.
, and
James
,
R. D.
,
2020
, “
Helical Miura Origami
,”
Phys. Rev. E
,
101
(
3
), p.
033002
.
19.
Chen
,
Y.
,
Lv
,
W.
,
Peng
,
R.
, and
Wei
,
G.
,
2019
, “
Mobile Assemblies of Four-Spherical-4R-Integrated Linkages and the Associated Four-Crease-Integrated Rigid Origami Patterns
,”
Mech. Mach. Theory
,
142
(
1
), p.
103613
.
20.
Yu
,
H.
,
Guo
,
Z.
, and
Wang
,
J.
,
2018
, “
A Method of Calculating the Degree of Freedom of Foldable Plate Rigid Origami With Adjacency Matrix
,”
Adv. Mech. Eng.
,
10
(
6
), pp.
1
20
.
21.
Hu
,
Y.
, and
Liang
,
H.
,
2020
, “
Folding Simulation of Rigid Origami With Lagrange Multiplier Method
,”
Int. J. Solids Struct.
,
202
(
1
), pp.
552
561
.
22.
Ma
,
J.
,
Zang
,
S.
,
Feng
,
H.
,
Chen
,
Y.
, and
You
,
Z.
,
2021
, “
Theoretical Characterization of a Non-Rigid-Foldable Square-Twist Origami for Property Programmability
,”
Int. J. Mech. Sci.
,
189
(
1
), p.
105981
.
23.
Zhang
,
T.
,
Kawaguchi
,
K.
, and
Wu
,
M.
,
2018
, “
A Folding Analysis Method for Origami Based on the Frame With Kinematic Indeterminacy
,”
Int. J. Mech. Sci.
,
146–147
(
1
), pp.
234
248
.
24.
Zimmermann
,
L.
,
Shea
,
K.
, and
Stanković
,
T.
,
2020
, “
Conditions for Rigid and Flat Foldability of Degree-n Vertices in Origami
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011020
.
25.
Xu
,
Y.
,
Chen
,
Y.
,
Liu
,
W.
,
Ma
,
X.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2020
, “
Degree of Freedom and Dynamic Analysis of the Multi-Loop Coupled Passive-Input Overconstrained Deployable Tetrahedral Mechanisms for Truss Antennas
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011010
.
26.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
27.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
28.
Ma
,
X.
,
Li
,
Y.
,
Li
,
T.
,
Dong
,
H.
,
Wang
,
D.
, and
Zhu
,
J.
,
2021
, “
Design and Analysis of a Novel Deployable Hexagonal Prism Module for Parabolic Cylinder Antenna
,”
Mech. Sci.
,
12
(
1
), pp.
9
18
.
29.
Gu
,
Y.
,
Wei
,
G.
, and
Chen
,
Y.
,
2021
, “
Thick-Panel Origami Cube
,”
Mech. Mach. Theory
,
164
(
1
), p.
104411
.
30.
Cao
,
W.
,
Xi
,
S.
,
Ding
,
H.
, and
Chen
,
Z.
,
2021
, “
Design and Kinematics of a Novel Double-Ring Truss Deployable Antenna Mechanism
,”
ASME J. Mech. Des.
,
143
(
12
), p.
124502
.
31.
Chen
,
Y.
,
You
,
Z.
, and
Tarnai
,
T.
,
2005
, “
Threefold-Symmetric Bricard Linkages for Deployable Structures
,”
Int. J. Solids Struct.
,
42
(
8
), pp.
2287
2301
.
32.
Chen
,
Y.
,
Feng
,
J.
, and
Sun
,
Q.
,
2018
, “
Lower-Order Symmetric Mechanism Modes and Bifurcation Behavior of Deployable Bar Structures With Cyclic Symmetry
,”
Int. J. Solids Struct.
,
139–140
(
1
), pp.
1
14
.
33.
Kumar
,
P.
, and
Pellegrino
,
S.
,
2000
, “
Computation of Kinematic Paths and Bifurcation Points
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7003
7027
.
34.
Cai
,
J.
,
Zhang
,
Q.
,
Feng
,
J.
, and
Xu
,
Y.
,
2019
, “
Modeling and Kinematic Path Selection of Retractable Kirigami Roof Structures
,”
Comput. Civ. Infrastruct. Eng.
,
34
(
4
), pp.
352
363
.
35.
Gan
,
W. W.
, and
Pellegrino
,
S.
,
2006
, “
Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop
,”
Proc. Inst. Mech. Eng. Part C
,
220
(
7
), pp.
1045
1056
.
36.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1996
, “
A New Concept for Solid Surface Deployable Antennas
,”
Acta Astronaut.
,
38
(
2
), pp.
103
113
.
37.
Parque
,
V.
,
Suzaki
,
W.
,
Miura
,
S.
,
Torisaka
,
A.
,
Miyashita
,
T.
, and
Natori
,
M.
,
2021
, “
Packaging of Thick Membranes Using a Multi-Spiral Folding Approach: Flat and Curved Surfaces
,”
Adv. Space Res.
,
67
(
9
), pp.
2589
2612
.
38.
Liyanage
,
P. M.
,
Gangasudan
,
N.
, and
Mallikarachchi
,
H. M. Y. C.
,
2021
, “
Modified Spiral Folding Pattern for Deployable Membranes
,”
Aerosp. Sci. Technol.
,
117
(
1
), p.
106926
.
39.
Gillman
,
A.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2018
, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities
,”
Int. J. Solids Struct.
,
147
(
1
), pp.
80
93
.
40.
Feng
,
H.
,
Peng
,
R.
,
Zang
,
S.
,
Ma
,
J.
, and
Chen
,
Y.
,
2020
, “
Rigid Foldability and Mountain-Valley Crease Assignments of Square-Twist Origami Pattern
,”
Mech. Mach. Theory
,
152
(
1
), p.
103947
.
41.
Liu
,
P.
,
Ma
,
J.
, and
Chen
,
Y.
,
2021
, “
The Kinematic Analysis and Bistable Characteristics of the Winding Origami Structure
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual, Online
,
Aug. 17–19
, Vol. 85451, ASME, p. V08BT08A032.
42.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
AK Peters/CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.