Abstract

This paper introduces a pair of low-cost, light-weight, and compliant force-sensing gripping pads used for manipulating box-like objects with smaller-sized humanoid robots. These pads measure normal gripping forces and center of pressure (CoP). A calibration method is developed to improve the CoP measurement accuracy. A hybrid force-alignment-position control framework is proposed to regulate the gripping forces and to ensure the surface alignment between the grippers and the object. Limit surface theory is incorporated as a contact friction modeling approach to determine the magnitude of gripping forces for slippage avoidance. The integrated hardware and software system is demonstrated with an NAO humanoid robot. Experiments show the effectiveness of the overall approach.

References

1.
Saeedvand
,
S.
,
Jafari
,
M.
,
Aghdasi
,
H. S.
, and
Baltes
,
J.
,
2019
, “
A Comprehensive Survey on Humanoid Robot Development
,”
Knowl. Eng. Rev.
,
34
.
2.
Gouaillier
,
D.
,
Collette
,
C.
, and
Kilner
,
C.
,
2010
, “
Omni-Directional Closed-Loop Walk for NAO
,”
IEEE-RAS International Conference on Humanoid Robots
,
Nashville, TN
,
Dec. 6–8
, IEEE, pp.
448
454
.
3.
Kim
,
J.-H.
,
2019
, “
Multi-axis Force-Torque Sensors for Measuring Zero-Moment Point in Humanoid Robots: A Review
,”
IEEE Sens. J.
,
20
(
3
), pp.
1126
1141
.
4.
Cao
,
M. Y.
,
Laws
,
S.
, and
Baena
,
F. R. Y.
,
2021
, “
Six-Axis Force/Torque Sensors for Robotics Applications: A Review
,”
IEEE Sens. J.
,
21
(
24
), pp.
27238
27251
.
5.
Ubeda
,
R. P.
,
Gutiérrez Rubert
,
S. C.
,
Zotovic Stanisic
,
R.
, and
Perles Ivars
,
Á.
,
2018
, “
Design and Manufacturing of an Ultra-Low-Cost Custom Torque Sensor for Robotics
,”
Sensors
,
18
(
6
), p.
1786
.
6.
Kim
,
U.
,
Kim
,
Y. B.
,
Seok
,
D.-Y.
,
So
,
J.
, and
Choi
,
H. R.
,
2017
, “
A Surgical Palpation Probe With 6-Axis Force/Torque Sensing Capability for Minimally Invasive Surgery
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2755
2765
.
7.
Xiong
,
L.
,
Guo
,
Y.
,
Jiang
,
G.
,
Zhou
,
X.
,
Jiang
,
L.
, and
Liu
,
H.
,
2020
, “
Six-Dimensional Force/Torque Sensor Based on Fiber Bragg Gratings With Low Coupling
,”
IEEE Trans. Ind. Electron.
,
68
(
5
), pp.
4079
4089
.
8.
Shams
,
S.
,
Lee
,
J. Y.
, and
Han
,
C.
,
2012
, “
Compact and Lightweight Optical Torque Sensor for Robots With Increased Range
,”
Sens. Actuat. A
,
173
(
1
), pp.
81
89
.
9.
Kim
,
U.
,
Jeong
,
H.
,
Do
,
H.
,
Park
,
J.
, and
Park
,
C.
,
2020
, “
Six-Axis Force/Torque Fingertip Sensor for an Anthropomorphic Robot Hand
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5566
5572
.
10.
Mattioli
,
T.
, and
Vendittelli
,
M.
,
2016
, “
Interaction Force Reconstruction for Humanoid Robots
,”
IEEE Rob. Autom. Lett.
,
2
(
1
), pp.
282
289
.
11.
Kruse
,
D.
,
Wen
,
J. T.
, and
Radke
,
R. J.
,
2014
, “
A Sensor-Based Dual-Arm Tele-Robotic System
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
1
), pp.
4
18
.
12.
Stephens
,
B. J.
, and
Atkeson
,
C. G.
,
2010
, “
Dynamic Balance Force Control for Compliant Humanoid Robots
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
1248
1255
.
13.
Arisumi
,
H.
,
Chardonnet
,
J.-R.
,
Kheddar
,
A.
, and
Yokoi
,
K.
,
2007
, “
Dynamic Lifting Motion of Humanoid Robots
,”
Proceedings of 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, IEEE, pp.
2661
2667
.
14.
Ohmura
,
Y.
, and
Kuniyoshi
,
Y.
,
2007
, “
Humanoid Robot Which Can Lift a 30kg Box by Whole Body Contact and Tactile Feedback
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, IEEE, pp.
1136
1141
.
15.
Han
,
Y.
,
Li
,
R.
, and
Chirikjian
,
G. S.
,
2020
, “
Can I Lift It? Humanoid Robot Reasoning About the Feasibility of Lifting a Heavy Box With Unknown Physical Properties
,” Preprint arXiv:2008.03801.
16.
Atlas is Put to Work in Factory
,” https://www.abc.net.au/news/2016-02-24/boston-dynamics-shows-off-new-atlas-robot/7196198, Accessed February 24, 2016.
17.
Yan
,
L.
,
Yang
,
Y.
,
Xu
,
W.
, and
Vijayakumar
,
S.
,
2018
, “
Dual-Arm Coordinated Motion Planning and Compliance Control for Capturing Moving Objects With Large Momentum
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, IEEE, pp.
7137
7144
.
18.
Bamotra
,
A.
,
Walia
,
P.
,
Prituja
,
A. V.
, and
Ren
,
H.
,
2019
, “
Layer-Jamming Suction Grippers With Variable Stiffness
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
035003
.
19.
Hayakawa
,
S.
,
Wan
,
W.
,
Koyama
,
K.
, and
Harada
,
K.
,
2022
, “
A Dual-Arm Robot That Manipulates Heavy Plates Cooperatively With a Vacuum Lifter
,” Preprint
arXiv:2203.10585
.
20.
Suresh
,
S. A.
,
Christensen
,
D. L.
,
Hawkes
,
E. W.
, and
Cutkosky
,
M.
,
2015
, “
Surface and Shape Deposition Manufacturing for the Fabrication of a Curved Surface Gripper
,”
ASME J. Mech. Rob.
,
7
(
2
), p.
021005
.
21.
Han
,
A. K.
,
Hajj-Ahmad
,
A.
, and
Cutkosky
,
M. R.
,
2020
, “
Hybrid Electrostatic and Gecko-Inspired Gripping Pads for Manipulating Bulky, Non-Smooth Items
,”
Smart Mater. Struct.
,
30
(
2
), p.
025010
.
22.
Han
,
A. K.
,
Hajj-Ahmad
,
A.
, and
Cutkosky
,
M. R.
,
2022
, “
Bimanual Handling of Deformable Objects With Hybrid Adhesion
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
5497
5503
.
23.
Roberge
,
J.-P.
,
Ruotolo
,
W.
,
Duchaine
,
V.
, and
Cutkosky
,
M.
,
2018
, “
Improving Industrial Grippers With Adhesion-Controlled Friction
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
1041
1048
.
24.
Jin
,
K.
,
Tian
,
Y.
,
Erickson
,
J. S.
,
Puthoff
,
J.
,
Autumn
,
K.
, and
Pesika
,
N. S.
,
2012
, “
Design and Fabrication of Gecko-Inspired Adhesives
,”
Langmuir
,
28
(
13
), pp.
5737
5742
.
25.
Raibert
,
M. H.
, and
Craig
,
J. J.
,
1981
, “
Hybrid Position/Force Control of Manipulators
,”
ASME J. Dyn. Sys. Meas. Control.
,
103
(
2
), pp.
126
133
.
26.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation: Part I–Theory
,”
ASME J. Dyn. Sys., Meas. Control.
,
107
(
1
), pp.
1
7
.
27.
Costanzo
,
M.
,
De Maria
,
G.
, and
Natale
,
C.
,
2019
, “
Two-Fingered In-Hand Object Handling Based on Force/Tactile Feedback
,”
IEEE Trans. Rob.
,
36
(
1
), pp.
157
173
.
28.
Chavan-Dafle
,
N.
,
Holladay
,
R.
, and
Rodriguez
,
A.
,
2020
, “
Planar In-Hand Manipulation Via Motion Cones
,”
Int. J. Rob. Res.
,
39
(
2–3
), pp.
163
182
.
29.
Ciocarlie
,
M.
,
Lackner
,
C.
, and
Allen
,
P.
,
2007
, “
Soft Finger Model With Adaptive Contact Geometry for Grasping and Manipulation Tasks
,”
Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07)
,
IEEE
, pp.
219
224
.
30.
Han
,
Y.
,
Li
,
R.
, and
Chirikjian
,
G. S.
,
2021
, “
Look at My New Blue Force-Sensing Shoes!
” Preprint arXiv:2104.06618.
31.
Calanca
,
A.
, and
Fiorini
,
P.
,
2016
, “On the Role of Compliance in Force Control”
Intelligent Autonomous Systems 13
, Springer International Publishing,
Springer
,
Switzerland
, pp.
1243
1255
.
32.
Kajita
,
S.
,
Hirukawa
,
H.
,
Harada
,
K.
, and
Yokoi
,
K.
,
2014
,
Introduction to Humanoid Robotics
, Vol.
101
,
Springer
,
Berlin/Heidelberg
.
33.
Goyal
,
S.
,
Ruina
,
A.
, and
Papadopoulos
,
J.
,
1991
, “
Planar Sliding With Dry Friction Part 1. Limit Surface and Moment Function
,”
Wear
,
143
(
2
), pp.
307
330
.
34.
Howe
,
R. D.
, and
Cutkosky
,
M. R.
,
1996
, “
Practical Force-Motion Models for Sliding Manipulation
,”
Int. J. Rob. Res.
,
15
(
6
), pp.
557
572
.
35.
Xydas
,
N.
, and
Kao
,
I.
,
1999
, “
Modeling of Contact Mechanics and Friction Limit Surfaces for Soft Fingers in Robotics, With Experimental Results
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
941
950
.
36.
Popov
,
V. L.
,
Heß
,
M.
, and
Willert
,
E.
,
2019
,
Handbook of Contact Mechanics: Exact Solutions of Axisymmetric Contact Problems
,
Springer Nature
,
Berlin/Heidelberg
.
37.
Lee
,
S. H.
, and
Cutkosky
,
M.
,
1991
, “
Fixture Planning With Friction
,”
J. Eng. Ind.
,
113
(
3
), pp.
320
327
.
38.
Drucker
,
D. C.
,
1954
, “
Coulomb Friction, Plasticity, and Limit Loads
,”
ASME J. Appl. Mech.
,
21
(
1
), pp.
71
74
.
39.
Goyal
,
S.
,
1989
, “
Planar Sliding of a Rigid Body With Dry Friction: Limit Surfaces and Dynamics of Motion
,” Ph.D. dissertation,
Cornell University
,
Ithaca, NY
.
40.
Fallon
,
M.
,
Kuindersma
,
S.
,
Karumanchi
,
S.
,
Antone
,
M.
,
Schneider
,
T.
,
Dai
,
H.
,
D’Arpino
,
C. P.
, et al.,
2015
, “
An Architecture for Online Affordance-Based Perception and Whole-Body Planning
,”
J. Field Rob.
,
32
(
2
), pp.
229
254
.
You do not currently have access to this content.