Abstract

Mobile manipulators that combine base mobility with the dexterity of an articulated manipulator have gained popularity in numerous applications ranging from manufacturing and infrastructure inspection to domestic service. Deployments span a range of interaction tasks with the operational environment comprising minimal interaction tasks such as inspection and complex interaction tasks such as logistics resupply and assembly. This flexibility, offered by the redundancy, needs to be carefully orchestrated to realize enhanced performance. Thus, advanced decision-support methodologies and frameworks are crucial for successful mobile manipulation in (semi-) autonomous and teleoperation contexts. Given the enormous scope of the literature, we restrict our attention to decision-support frameworks specifically in the context of wheeled mobile manipulation. Hence, here, we present a classification of wheeled mobile manipulation literature while accounting for its diversity. The intertwining of the deployment tasks, application arenas, and decision-making methodologies are discussed with an eye for future avenues for research.

References

1.
Christensen
,
H. I.
,
Amato
,
N.
,
Yanco
,
H.
,
Mataric
,
M.
,
Choset
,
H.
,
Drobnis
,
A. W.
,
Goldberg
,
K.
,
Grizzle
,
J.
,
Hager
,
G.
,
Hollerbach
,
J.
,
Hutchinson
,
S.
,
Krovi
,
V.
,
Lee
,
D.
,
Smart
,
B.
,
Trinkle
,
J.
, and
Sukhatme
,
G.
,
2021
, “
A Roadmap for Us Robotics—From Internet to Robotics 2020 Edition
,”
Found. Trends Robot.
,
8
(
4
), pp.
307
424
.
2.
Bayle
,
B.
,
Fourquet
,
J.-Y.
, and
Renaud
,
M.
,
2001
, “
Manipulability Analysis for Mobile Manipulators
,”
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164)
,
Seoul, South Korea
,
May 21–26
, Vol.
2
, pp.
1251
1256
.
3.
De Luca
,
A.
,
Oriolo
,
G.
, and
Giordano
,
P. R.
,
2007
, “
Image-Based Visual Servoing Schemes for Nonholonomic Mobile Manipulators
,”
Robotica
,
25
(
2
), pp.
131
145
.
4.
Fruchard
,
M.
,
Morin
,
P.
, and
Samson
,
C.
,
2006
, “
A Framework for the Control of Nonholonomic Mobile Manipulators
,”
Int. J. Robot. Res.
,
25
(
8
), pp.
745
780
.
5.
Park
,
J.
, and
Khatib
,
O.
,
2006
, “
A Haptic Teleoperation Approach Based on Contact Force Control
,”
Int. J. Robot. Res.
,
25
(
5–6
), pp.
575
591
.
6.
Seraji
,
H.
,
1998
, “
A Unified Approach to Motion Control of Mobile Manipulators
,”
Int. J. Robot. Res.
,
17
(
2
), pp.
107
118
.
7.
Tang
,
C. P.
,
Bhatt
,
R.
,
Abou-Samah
,
M.
, and
Krovi
,
V.
,
2006
, “
Screw-Theoretic Analysis Framework for Cooperative Payload Transport by Mobile Manipulator Collectives
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
169
178
.
8.
Stentz
,
A.
,
Bares
,
J.
,
Singh
,
S.
, and
Rowe
,
P.
,
1998
, “
A Robotic Excavator for Autonomous Truck Loading
,”
Proceedings of 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190)
,
Victoria, BC, Canada
,
Oct. 13–17
, Vol.
3
, pp.
1885
1893
.
9.
Gardner
,
J. F.
, and
Velinsky
,
S. A.
,
2000
, “
Kinematics of Mobile Manipulators and Implications for Design
,”
J. Robotic Syst.
,
17
(
6
), pp.
309
320
.
10.
Colbaugh
,
R.
,
Trabatti
,
M.
, and
Glass
,
K.
,
1999
, “
Redundant Nonholonomic Mechanical Systems: Characterization and Control
,”
Robotica
,
17
(
2
), pp.
203
217
.
11.
Yamamoto
,
Y.
, and
Yun
,
X.
,
1996
, “
Effect of the Dynamic Interaction on Coordinated Control of Mobile Manipulators
,”
IEEE Trans. Robot. Autom.
,
12
(
5
), pp.
816
824
.
12.
Yamamoto
,
Y.
, and
Yun
,
X.
,
1999
, “
Unified Analysis on Mobility and Manipulability of Mobile Manipulators
,”
Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C)
,
Detroit, MI
,
May 10–15
, Vol.
2
, pp.
1200
1206
.
13.
Bostelman
,
R.
,
Hong
,
T.
, and
Marvel
,
J.
,
2016
, “
Survey of Research for Performance Measurement of Mobile Manipulators
,”
J. Res. Natl. Inst. Stand. Technol.
,
121
, p.
342
.
14.
Song
,
Z.-S.
,
Yi
,
J.-Q.
, and
Zhao
,
D.-B.
,
2003
, “
Survey of the Control for Mobile Manipulators
,”
Robot
,
25
(
5
), pp.
465
480
.
15.
Youakim
,
D.
, and
Ridao
,
P.
,
2018
, “
Motion Planning Survey for Autonomous Mobile Manipulators Underwater Manipulator Case Study
,”
Rob. Auton. Syst.
,
107
(
C
), pp.
20
44
.
16.
Khamseh
,
H. B.
,
Janabi-Sharifi
,
F.
, and
Abdessameud
,
A.
,
2018
, “
Aerial Manipulation—A Literature Survey
,”
Rob. Auton. Syst.
,
107
(
3
), pp.
221
235
.
17.
Li
,
Z.
,
2017
,
Fundamentals in Modeling and Control of Mobile Manipulators
,
Taylor and Francis Group
,
London, UK
.
18.
Simetti
,
E.
,
Casalino
,
G.
,
Wanderlingh
,
F.
, and
Aicardi
,
M.
,
2019
, “
A Task Priority Approach to Cooperative Mobile Manipulation: Theory and Experiments
,”
Rob. Auton. Syst.
,
122
, p.
103287
.
19.
Sereinig
,
M.
,
Werth
,
W.
, and
Faller
,
L. M.
,
2020
, “
A Review of the Challenges in Mobile Manipulation: Systems Design and RoboCup Challenges: Recent Developments With a Special Focus on the RoboCup
,”
Elektrotechnik und Informationstechnik
,
137
(
6
), pp.
297
308
.
20.
Yang
,
M.
,
Yang
,
E.
,
Zante
,
R. C.
,
Post
,
M.
, and
Liu
,
X.
,
2019
, “
Collaborative Mobile Industrial Manipulator: A Review of System Architecture and Applications
,”
ICAC 2019 – 2019 25th IEEE International Conference on Automation and Computing
,
Lancaster, UK
,
Sept. 5–7
, pp.
5
7
.
21.
Campion
,
G.
, and
Chung
,
W.
,
2008
, “Wheeled Robots,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
391
410
.
22.
Alamdari
,
A.
, and
Krovi
,
V.
,
2016
, “Static Balancing of Articulated Wheeled Vehicles by Parallelogram- and Spring-based Compensation,”
Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots
,
D.
Zhang
, and
B.
Wei
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
513
527
.
23.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Static Balancing of Highly Reconfigurable Articulated Wheeled Vehicles for Power Consumption Reduction of Actuators
,”
Int. J. Mechanisms Robotic Syst.
,
3
(
1
), p.
15
.
24.
Alamdari
,
A.
,
Zhou
,
X.
, and
Krovi
,
V. N.
,
2013
, “
Kinematic Modeling, Analysis and Control of Highly Reconfigurable Articulated Wheeled Vehicles
,”
Volume 6A: 37th Mechanisms and Robotics Conference
,
Portland, OR
,
Aug. 4–7
, p.
V06AT07A070
.
25.
Fu
,
Q.
,
Zhou
,
X.
, and
Krovi
,
V.
,
2014
, “The Reconfigurable Omnidirectional Articulated Mobile Robot (roamer),”
Experimental Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
871
882
.
26.
Abou-Samah
,
M.
, and
Krovi
,
V.
,
2002
, “
Optimal Configuration Selection for a Cooperating System of Mobile Manipulators
,”
Volume 5: 27th Biennial Mechanisms and Robotics Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 26–Oct. 2
, pp.
1299
1306
.
27.
Tang
,
C. P.
,
2004
, “
Manipulability-Based Analysis of Cooperative Payload Transport by Robot Collectives
,” Doctoral Dissertation, State University of New York at Buffalo.
28.
Yoshikawa
,
T.
,
2003
,
Foundations of Robotics: Analysis and Control
,
The MIT Press
,
Cambridge, MA
.
29.
Lynch
,
K. M.
, and
Park
,
F. C.
,
2019
,
Modern Robotics: Mechanics, Planning, and Control
,
Cambridge University Press
,
Cambridge, UK
.
30.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1993
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, London, UK.
31.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2020
,
Robot Modeling and Control
,
John Wiley and Sons
,
Hoboken, NJ
.
32.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin, Germany
.
33.
Desouza
,
G.
, and
Kak
,
A.
,
2002
, “
Vision for Mobile Robot Navigation: A Survey
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
24
(
2
), pp.
237
267
.
34.
Bavle
,
H.
,
Sanchez-Lopez
,
J. L.
,
Schmidt
,
E. F.
, and
Voos
,
H.
,
2021
, “
From Slam to Situational Awareness: Challenges and Survey
.”
arXiv preprint
https://arxiv.org/abs/2110.00273
35.
Lin
,
H.
,
2020
, “
Robotic Manipulation Based on 3d Vision: A Survey
,”
Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems, PRIS 2020
,
Athens, Greece
,
July 30–Aug. 2
,
Association for Computing Machinery
, pp.
1
15
.
36.
Martinez-Martin
,
E.
,
2019
, “
Vision for Robust Robot Manipulation
,”
Sensors
,
19
(
7
), p.
1648
.
37.
Bai
,
Q.
,
Li
,
S.
,
Yang
,
J.
,
Song
,
Q.
,
Li
,
Z.
, and
Zhang
,
X.
,
2020
, “
Object Detection Recognition and Robot Grasping Based on Machine Learning: A Survey
,”
IEEE Access
,
8
, p.
181855
.
38.
Rasouli
,
A.
,
2020
, “
Deep Learning for Vision-Based Prediction: A Survey
,”
arXiv preprint
https://arxiv.org/abs/2007.00095
39.
Kragic
,
D.
, and
Christensen
,
H. I.
,
2002
, “
Survey on Visual Servoing for Manipulation
,” Computational Vision and Active Perception Laboratory, Fiskartorpsv.
40.
Ribeiro
,
E. G.
,
de Queiroz Mendes
,
R.
, and
Grassi
,
V.
,
2021
, “
Real-Time Deep Learning Approach to Visual Servo Control and Grasp Detection for Autonomous Robotic Manipulation
,”
Rob. Auton. Syst.
,
139
, p.
103757
.
41.
Belmonte
,
Á.
,
Ramón
,
J. L.
,
Pomares
,
J.
,
Garcia
,
G. J.
, and
Jara
,
C. A.
,
2019
, “
Optimal Image-Based Guidance of Mobile Manipulators Using Direct Visual Servoing
,”
Electronics
,
8
(
4
), p.
374
.
42.
Bonci
,
A.
,
Cen Cheng
,
P. D.
,
Indri
,
M.
,
Nabissi
,
G.
, and
Sibona
,
F.
,
2021
, “
Human-Robot Perception in Industrial Environments: A Survey
,”
Sensors
,
21
(
5
), p.
1571
.
43.
Tsai
,
C.-Y.
,
Chou
,
Y.-S.
,
Wong
,
C.-C.
,
Lai
,
Y.-C.
, and
Huang
,
C.-C.
,
2020
, “
Visually Guided Picking Control of an Omnidirectional Mobile Manipulator Based on End-to-End Multi-Task Imitation Learning
,”
IEEE Access
,
8
, pp.
1882
1891
.
44.
Arora
,
P.
, and
Papachristos
,
C.
,
2020
, “Mobile Manipulator Robot Visual Servoing and Guidance for Dynamic Target Grasping,”
Advances in Visual Computing
,
Bebis
,
G.
,
Yin
,
Z.
,
Kim
,
E.
,
Bender
,
J.
,
Subr
,
K.
,
Kwon
,
B. C.
,
Zhao
,
J.
,
Kalkofen
,
D.
,
Baciu
,
G.
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
223
235
.
45.
Zhao
,
W.
, and
Wang
,
H.
,
2020
, “
Adaptive Image-Based Visual Servoing of Mobile Manipulator With an Uncalibrated Fixed Camera
,”
2020 IEEE International Conference on Real-time Computing and Robotics (RCAR)
,
Asahikawa, Japan
,
Sept. 28–29
, pp.
440
445
.
46.
Jiao
,
J.
,
Ye
,
S.
,
Cao
,
Z.
,
Gu
,
N.
,
Liu
,
X.
, and
Tan
,
M.
,
2012
, “
Embedded Vision-Based Autonomous Move-to-Grasp Approach for a Mobile Manipulator
,”
Int. J. Advan. Robotic Systems
,
9
(
6
), p.
257
.
47.
Jia
,
F.
,
Tzintzun
,
J.
, and
Ahmad
,
R.
,
2019
, “
An Improved Robot Path Planning Algorithm for a Novel Self-Adapting Intelligent Machine Tending Robotic System
,”
Latin American Symposium on Industrial and Robotic Systems
,
Tampico, Mexico
,
Oct. 30–Nov. 1
,
Springer
, pp.
53
64
.
48.
Arrais
,
R.
,
Veiga
,
G.
,
Ribeiro
,
T. T.
,
Oliveira
,
D.
,
Fernandes
,
R.
,
Conceição
,
A. G. S.
, and
Farias
,
P.
,
2019
, “
Application of the Open Scalable Production System to Machine Tending of Additive Manufacturing Operations by a Mobile Manipulator
,”
EPIA Conference on Artificial Intelligence
,
Vila Real, Portugal
,
Sept. 3–6
,
Springer
, pp.
345
356
.
49.
Zapata-Impata
,
B. S.
,
Shah
,
V.
,
Singh
,
H.
, and
Platt
,
R.
,
2018
, “
Autotrans: An Autonomous Open World Transportation System
,”
arXiv preprint
. https://arxiv.org/abs/1810.03400
50.
Nishida
,
T.
,
Takemura
,
Y.
,
Fuchikawa
,
Y.
,
Kurogi
,
S.
,
Ito
,
S.
,
Obata
,
M.
,
Hiratsuka
,
N.
, et al.,
2006
, “
Development of Outdoor Service Robots
,”
2006 SICE-ICASE International Joint Conference
,
Busan, South Korea
,
Oct. 18–21
,
IEEE
, pp.
2052
2057
.
51.
Dömel
,
A.
,
Kriegel
,
S.
,
Kaßecker
,
M.
,
Brucker
,
M.
,
Bodenmüller
,
T.
, and
Suppa
,
M.
,
2017
, “
Toward Fully Autonomous Mobile Manipulation for Industrial Environments
,”
Int. J. Adv. Robotic Syst.
,
14
(
4
), p.
1729881417718588
.
52.
Annem
,
V.
,
Rajendran
,
P.
,
Thakar
,
S.
, and
Gupta
,
S. K.
,
2019
, “
Towards Remote Teleoperation of a Semi-Autonomous Mobile Manipulator System in Machine Tending Tasks
,”
ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
,
American Society of Mechanical Engineers Digital Collection
, p. V001T02A027.
53.
Wise
,
M.
,
Ferguson
,
M.
,
King
,
D.
,
Diehr
,
E.
, and
Dymesich
,
D.
,
2016
, “
Fetch and Freight: Standard Platforms for Service Robot Applications
,”
IJCAI 2016 Workshop on Autonomous Mobile Service Robots
,
New York City
,
July 11
.
54.
Shepherd
,
S.
, and
Buchstab
,
A.
,
2014
, “
Kuka Robots On-Site
,”
Robotic Fabrication in Architecture, Art and Design 2014
,
Ann Arbor, MI
,
May 17–18
,
Springer
, pp.
373
380
.
55.
Taipalus
,
T.
, and
Kosuge
,
K.
,
2005
, “
Development of Service Robot for Fetching Objects in Home Environment
,”
2005 International Symposium on Computational Intelligence in Robotics and Automation
,
Espoo, Finland
,
June 27–30
,
IEEE
, pp.
451
456
.
56.
Jain
,
A.
, and
Kemp
,
C. C.
,
2010
, “
El-e: An Assistive Mobile Manipulator That Autonomously Fetches Objects From Flat Surfaces
,”
Auton. Robots
,
28
(
1
), p.
45
.
57.
Fan
,
Z.
,
King
,
C.-H.
,
Darb
,
H.
, and
Kemp
,
C. C.
,
2010
, “
Dusty: A Teleoperated Assistive Mobile Manipulator That Retrieves Objects From the Floor
,”
Georgia Institute of Technology
,
London, UK
.
58.
Jian-Jun
,
Z.
,
Ru-Qing
,
Y.
,
Wei-Jun
,
Z.
,
Xin-Hua
,
W.
, and
Jun
,
Q.
,
2007
, “
Research on Semi-automatic Bomb Fetching for an Eod Robot
,”
Int. J. Adv. Robotic Syst.
,
4
(
2
), p.
27
.
59.
Cakmak
,
M.
,
Srinivasa
,
S. S.
,
Lee
,
M. K.
,
Forlizzi
,
J.
, and
Kiesler
,
S.
,
2011
, “
Human Preferences for Robot-Human Hand-Over Configurations
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
1986
1993
.
60.
Kuffner
,
J. J.
, and
LaValle
,
S. M.
,
2000
, “
RRT-connect: An Efficient Approach to Single-Query Path Planning
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol.
2
,
IEEE
, pp.
995
1001
.
61.
Gammell
,
J. D.
,
Barfoot
,
T. D.
, and
Srinivasa
,
S. S.
,
2020
, “
Batch Informed Trees (bit*): Informed Asymptotically Optimal Anytime Search
,”
Int. J. Robot. Res.
,
39
(
5
), pp.
543
567
.
62.
Rickert
,
M.
,
Brock
,
O.
, and
Knoll
,
A.
,
2008
, “
Balancing Exploration and Exploitation in Motion Planning
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
,
IEEE
, pp.
2812
2817
.
63.
Rajendran
,
P.
,
Thakar
,
S.
,
Kabir
,
A. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2019
, “
Context-Dependent Search for Generating Paths for Redundant Manipulators in Cluttered Environments
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
,
IEEE
, pp.
5573
5579
.
64.
Kabir
,
A. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2018
, “
Trajectory Planning for Manipulators Operating in Confined Workspaces
,”
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
,
Munich, Germany
,
Aug. 20–24
,
IEEE
, pp.
84
91
.
65.
Gammell
,
J. D.
,
Srinivasa
,
S. S.
, and
Barfoot
,
T. D.
,
2014
, “
Informed Rrt*: Optimal Sampling-Based Path Planning Focused Via Direct Sampling of an Admissible Ellipsoidal Heuristic
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
,
IEEE
, pp.
2997
3004
.
66.
Ratliff
,
N.
,
Zucker
,
M.
,
Bagnell
,
J. A.
, and
Srinivasa
,
S.
,
2009
, “
Chomp: Gradient Optimization Techniques for Efficient Motion Planning
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
,
IEEE
, pp.
489
494
.
67.
Kalakrishnan
,
M.
,
Chitta
,
S.
,
Theodorou
,
E.
,
Pastor
,
P.
, and
Schaal
,
S.
,
2011
, “
Stomp: Stochastic Trajectory Optimization for Motion Planning
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
,
IEEE
, pp.
4569
4574
.
68.
Pivtoraiko
,
M.
,
Knepper
,
R. A.
, and
Kelly
,
A.
,
2009
, “
Differentially Constrained Mobile Robot Motion Planning in State Lattices
,”
J. Field Robot.
,
26
(
3
), pp.
308
333
.
69.
Laumond
,
J.-P.
,
Jacobs
,
P. E.
,
Taix
,
M.
, and
Murray
,
R. M.
,
1994
, “
A Motion Planner for Nonholonomic Mobile Robots
,”
IEEE. Trans. Rob. Autom.
,
10
(
5
), pp.
577
593
.
70.
Simba
,
K. R.
,
Uchiyama
,
N.
, and
Sano
,
S.
,
2016
, “
Real-Time Smooth Trajectory Generation for Nonholonomic Mobile Robots Using Bézier Curves
,”
Robot. Computer-Integrated Manuf.
,
41
(
C
), pp.
31
42
.
71.
Thakar
,
S.
,
Fang
,
L.
,
Shah
,
B.
, and
Gupta
,
S.
,
2018
, “
Towards Time-Optimal Trajectory Planning for Pick-and-Transport Operation With a Mobile Manipulator
,”
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
,
Munich, Germany
,
Aug. 20–24
,
IEEE
, pp.
981
987
.
72.
Pilania
,
V.
, and
Gupta
,
K.
,
2018
, “
Mobile Manipulator Planning Under Uncertainty in Unknown Environments
,”
Int. J. Robot. Res.
,
37
(
2–3
), pp.
316
339
.
73.
Pilania
,
V.
, and
Gupta
,
K.
,
2015
, “
A Hierarchical and Adaptive Mobile Manipulator Planner With Base Pose Uncertainty
,”
Auton. Robots
,
39
(
1
), pp.
65
85
.
74.
Thakar
,
S.
,
Rajendran
,
P.
,
Kim
,
H.
,
Kabir
,
A. M.
, and
Gupta
,
S. K.
,
2020
, “
Accelerating Bi-Directional Sampling-Based Search for Motion Planning of Non-Holonomic Mobile Manipulators
,”
IEEE/RSJ International Conference on Intelligent Robots and System (IROS)
,
Las Vegas, NV
,
Oct. 24–Jan. 24
.
75.
Oriolo
,
G.
, and
Mongillo
,
C.
,
2005
, “
Motion Planning for Mobile Manipulators Along Given End-Effector Paths
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
,
IEEE
, pp.
2154
2160
.
76.
Mohri
,
A.
,
Furuno
,
S.
, and
Yamamoto
,
M.
,
2001
, “
Trajectory Planning of Mobile Manipulator With End-Effector’s Specified Path
,”
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180)
, Vol.
4
,
Maui, HI
,
Oct. 29–Nov. 3
,
IEEE
, pp.
2264
2269
.
77.
Kabir
,
A. M.
,
Kanyuck
,
A.
,
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Thakar
,
S.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2019
, “
Generation of Synchronized Configuration Space Trajectories of Multi-Robot Systems
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
,
IEEE
, pp.
8683
8690
.
78.
Thakar
,
S.
,
Rajendran
,
P.
,
Annem
,
V.
,
Kabir
,
A.
, and
Gupta
,
S.
,
2019
, “
Accounting for Part Pose Estimation Uncertainties During Trajectory Generation for Part Pick-Up Using Mobile Manipulators
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
,
IEEE
, pp.
1329
1336
.
79.
Kingston
,
Z.
,
Moll
,
M.
, and
Kavraki
,
L. E.
,
2018
, “
Sampling-Based Methods for Motion Planning With Constraints
,”
Ann. Rev. Control, Robotics, Auton. Syst.
,
1
, pp.
159
185
.
80.
Mahler
,
J.
,
Liang
,
J.
,
Niyaz
,
S.
,
Laskey
,
M.
,
Doan
,
R.
,
Liu
,
X.
,
Ojea
,
J. A.
, and
Goldberg
,
K.
,
2017
, “
Dex-net 2.0: Deep Learning to Plan Robust Grasps With Synthetic Point Clouds and Analytic Grasp Metrics
,”
arXiv preprint
. https://arxiv.org/abs/1703.09312
81.
Mahler
,
J.
,
Pokorny
,
F. T.
,
Hou
,
B.
,
Roderick
,
M.
,
Laskey
,
M.
,
Aubry
,
M.
,
Kohlhoff
,
K.
,
Kröger
,
T.
,
Kuffner
,
J.
, and
Goldberg
,
K.
,
2016
, “
Dex-net 1.0: A Cloud-Based Network of 3d Objects for Robust Grasp Planning Using a Multi-Armed Bandit Model With Correlated Rewards
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
,
IEEE
, pp.
1957
1964
.
82.
Johns
,
E.
,
Leutenegger
,
S.
, and
Davison
,
A. J.
,
2016
, “
Deep Learning a Grasp Function for Grasping Under Gripper Pose Uncertainty
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
4461
4468
.
83.
Lenz
,
I.
,
Lee
,
H.
, and
Saxena
,
A.
,
2015
, “
Deep Learning for Detecting Robotic Grasps
,”
Int. J. Robot. Res.
,
34
(
4–5
), pp.
705
724
.
84.
Kumbla
,
N. B.
,
Thakar
,
S.
,
Kaipa
,
K. N.
,
Marvel
,
J.
, and
Gupta
,
S. K.
,
2017
, “
Simulation Based On-line Evaluation of Singulation Plans to Handle Perception Uncertainty in Robotic Bin Picking
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing
,
Los Angeles, CA
,
June 4–8
,
American Society of Mechanical Engineers Digital Collection
, p.
V003T04A002
.
85.
Kumbla
,
N. B.
,
Thakar
,
S.
,
Kaipa
,
K. N.
,
Marvel
,
J.
, and
Gupta
,
S. K.
,
2018
, “
Handling Perception Uncertainty in Simulation-Based Singulation Planning for Robotic Bin Picking
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021004
.
86.
Yamazaki
,
K.
,
Tomono
,
M.
,
Tsubouchi
,
T.
, and
Yuta
,
S.-I.
,
2006
, “
A Grasp Planning for Picking Up an Unknown Object for a Mobile Manipulator
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation 2006. ICRA 2006
,
Orlando, FL
,
May 15–19
,
IEEE
, pp.
2143
2149
.
87.
Li
,
Z.
,
Zhao
,
T.
,
Chen
,
F.
,
Hu
,
Y.
,
Su
,
C.-Y.
, and
Fukuda
,
T.
,
2017
, “
Reinforcement Learning of Manipulation and Grasping Using Dynamical Movement Primitives for a Humanoidlike Mobile Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
23
(
1
), pp.
121
131
.
88.
Staub
,
B.
,
Tanwani
,
A. K.
,
Mahler
,
J.
,
Breyer
,
M.
,
Laskey
,
M.
,
Takaoka
,
Y.
,
Bajracharya
,
M.
,
Siegwart
,
R.
, and
Goldberg
,
K.
,
2019
, “
Dex-net Mm: Deep Grasping for Surface Decluttering With a Low-Precision Mobile Manipulator
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
,
IEEE
, pp.
1373
1379
.
89.
Thakar
,
S.
,
Rajendran
,
P.
,
Kabir
,
A. M.
, and
Gupta
,
S. K.
,
2020
, “
Manipulator Motion Planning for Part Pickup and Transport Operations From a Moving Base
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
1
), pp.
191
206
.
90.
Jangid
,
H.
,
Jain
,
S.
,
Teka
,
B.
,
Raja
,
R.
, and
Dutta
,
A.
,
2020
, “
Kinematics-Based End-Effector Path Control of a Mobile Manipulator System on an Uneven Terrain Using a Two-Stage Support Vector Machine
,”
Robotica
,
38
(
8
), pp.
1415
1433
.
91.
Osman
,
M.
,
Mehrez
,
M. W.
,
Yang
,
S.
,
Jeon
,
S.
, and
Melek
,
W.
,
2020
, “
End-Effector Stabilization of a 10-dof Mobile Manipulator Using Nonlinear Model Predictive Control
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
9772
9777
. 21th IFAC World Congress.
92.
Galicki
,
M.
,
2019
, “
Optimal Cascaded Control of Mobile Manipulators
,”
Nonlinear Dyn.
,
96
(
2
), pp.
1367
1389
.
93.
Miksch
,
W.
, and
Schroeder
,
D.
,
1992
, “
Performance-Functional Based Controller Design for a Mobile Manipulator
,”
Proceedings 1992 IEEE International Conference on Robotics and Automation
, Vol.
1
,
Nice, France
,
May 12–14
, pp.
227
232
.
94.
Mishra
,
S.
,
Londhe
,
P. S.
,
Mohan
,
S.
,
Vishvakarma
,
S. K.
, and
Patre
,
B. M.
,
2018
, “
Robust Task-Space Motion Control of a Mobile Manipulator Using a Nonlinear Control With an Uncertainty Estimator
,”
Comput. Electr. Eng.
,
67
(
C
), pp.
729
740
.
95.
Pedersen
,
M. R.
,
Nalpantidis
,
L.
,
Andersen
,
R. S.
,
Schou
,
C.
,
Bøgh
,
S.
,
Krüger
,
V.
, and
Madsen
,
O.
,
2016
, “
Robot Skills for Manufacturing: From Concept to Industrial Deployment
,”
Robot. Computer-Integrated Manuf.
,
37
, pp.
282
291
.
96.
Kim
,
Y.-L.
,
Ahn
,
K.-H.
, and
Song
,
J.-B.
,
2016
, “
Direct Teaching Algorithm Based on Task Assistance for Machine Tending
,”
2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Xi'an, China
,
Aug. 19–22
, pp.
861
866
.
97.
Nielsen
,
I.
,
Dang
,
Q.-V.
,
Bocewicz
,
G.
, and
Banaszak
,
Z.
,
2017
, “
A Methodology for Implementation of Mobile Robot in Adaptive Manufacturing Environments
,”
J. Intell. Manuf.
,
28
(
5
), pp.
1171
1188
.
98.
Andersen
,
R. E.
,
Hansen
,
E. B.
,
Cerny
,
D.
,
Madsen
,
S.
,
Pulendralingam
,
B.
,
Bøgh
,
S.
, and
Chrysostomou
,
D.
,
2017
, “
Integration of a Skill-Based Collaborative Mobile Robot in a Smart Cyber-Physical Environment
,”
Procedia Manuf.
,
11
, pp.
114
123
.
99.
Deepak
,
B. B.
, and
Parhi
,
D. R.
,
2016
, “
Control of an Automated Mobile Manipulator Using Artificial Immune System
,”
J. Exp. Theor. Artif. Intell.
,
28
(
1–2
), pp.
417
439
.
100.
Affan
,
M.
,
Ahmed
,
S. U.
, and
Uddin
,
R.
,
2020
, “
Pick-and-Place Task Using Wheeled Mobile Manipulator—A Control Design Perspective
,”
2020 International Conference on Computing and Information Technology (ICCIT-1441)
,
Tabuk, Saudi Arabia
,
Sept. 9–10
, Vol.
2
, pp.
34
39
.
101.
Iriondo
,
A.
,
Lazkano
,
E.
,
Susperregi
,
L.
,
Urain
,
J.
,
Fernandez
,
A.
, and
Molina
,
J.
,
2019
, “
Pick and Place Operations in Logistics Using a Mobile Manipulator Controlled With Deep Reinforcement Learning
,”
Appl. Sci.
,
9
(
2
), p.
348
.
102.
Mar Myint
,
W.
,
2015
, “
Kinematic Control of Pick and Place Robot Arm
,”
Int. J. Eng. Tech.
,
1
(
4
), pp.
63
70
.
103.
Burridge
,
R. R.
,
Rizzi
,
A. A.
, and
Koditschek
,
D. E.
,
1995
, “
Toward a Dynamical Pick and Place
,”
IEEE Int. Conf. Intell. Robot. Syst.
,
2
, pp.
292
297
.
104.
Bicchi
,
A.
, and
Kumar
,
V.
,
2000
, “
Robotic Grasping and Contact: A Review
,”
Proceedings-IEEE Int. Conf. Robot. Autom.
,
1
, pp.
348
353
.
105.
Kleeberger
,
K.
,
Bormann
,
R.
,
Kraus
,
W.
, and
Huber
,
M. F.
,
2020
, “
A Survey on Learning-Based Robotic Grasping
,”
Current Robotics Reports
,
1
(
4
), pp.
239
249
.
106.
Nagatani
,
K.
, and
Yuta
,
S.
,
1996
, “
Designing Strategy and Implementation of Mobile Manipulator Control System for Opening Door
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
3
, pp.
2828
2834
.
107.
Sun
,
Y.
,
Xi
,
N.
,
Tan
,
J.
, and
Wang
,
Y.
,
2002
, “
Interactive Model Identification for Nonholonomic Cart Pushed by a Mobile Manipulator
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
4
, pp.
3966
3971
.
108.
Dong
,
W.
,
2002
, “
On Trajectory and Force Tracking Control of Constrained Mobile Manipulators With Parameter Uncertainty
,”
Automatica
,
38
(
9
), pp.
1475
1484
.
109.
Ge
,
S. S.
,
Wang
,
Z.
, and
Lee
,
T. H.
,
2003
, “
Adaptive Stabilization of Uncertain Nonholonomic Systems by State and Output Feedback
,”
Automatica
,
39
(
8
), pp.
1451
1460
.
110.
Korayem
,
M. H.
,
Azimirad
,
V.
,
Nikoobin
,
A.
, and
Boroujeni
,
Z.
,
2010
, “
Maximum Load-Carrying Capacity of Autonomous Mobile Manipulator in an Environment With Obstacle Considering Tip Over Stability
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5–8
), pp.
811
829
.
111.
Recker
,
T.
,
Heilemann
,
F.
, and
Raatz
,
A.
,
2020
, “
Handling of Large and Heavy Objects Using a Single Mobile Manipulator in Combination With a Roller Board
,”
Procedia CIRP
,
97
, pp.
21
26
.
112.
Ohashi
,
F.
,
Kaminishi
,
K.
,
Figueroa Heredia
,
J. D.
,
Kato
,
H.
,
Ogata
,
T.
,
Hara
,
T.
, and
Ota
,
J.
,
2016
, “
Realization of Heavy Object Transportation by Mobile Robots Using Handcarts and Outrigger
,”
ROBOMECH J.
,
3
(
1
), p.
27
.
113.
Balatti
,
P.
,
Fusaro
,
F.
,
Villa
,
N.
,
Lamon
,
E.
, and
Ajoudani
,
A.
,
2020
, “
A Collaborative Robotic Approach to Autonomous Pallet Jack Transportation and Positioning
,”
IEEE Access
,
8
, p.
142191
.
114.
Yu
,
S.-N.
,
Ryu
,
B.-G.
,
Lim
,
S.-J.
,
Kim
,
C.-J.
,
Kang
,
M.-K.
, and
Han
,
C.-S.
,
2009
, “
Feasibility Verification of Brick-Laying Robot Using Manipulation Trajectory and the Laying Pattern Optimization
,”
Autom. Construction
,
18
(
5
), pp.
644
655
.
115.
Knepper
,
R. A.
,
Layton
,
T.
,
Romanishin
,
J.
, and
Rus
,
D.
,
2013
, “
Ikeabot: An Autonomous Multi-Robot Coordinated Furniture Assembly System
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
855
862
.
116.
Hamner
,
B.
,
Koterba
,
S.
,
Shi
,
J.
,
Simmons
,
R.
, and
Singh
,
S.
,
2010
, “
An Autonomous Mobile Manipulator for Assembly Tasks
,”
Auton. Robots
,
28
(
1
), p.
131
.
117.
Bolger
,
A.
,
Faulkner
,
M.
,
Stein
,
D.
,
White
,
L.
,
Yun
,
S.-k.
, and
Rus
,
D.
,
2010
, “
Experiments in Decentralized Robot Construction With Tool Delivery and Assembly Robots
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
,
IEEE
, pp.
5085
5092
.
118.
Lueth
,
T. C.
,
Nassal
,
U. M.
, and
Rembold
,
U.
,
1995
, “
Reliability and Integrated Capabilities of Locomotion and Manipulation for Autonomous Robot Assembly
,”
Rob. Auton. Syst.
,
14
(
2–3
), pp.
185
198
.
119.
Minca
,
E.
,
Filipescu
,
A.
, and
Voda
,
A.
,
2014
, “
Modelling and Control of an Assembly/Disassembly Mechatronics Line Served by Mobile Robot With Manipulator
,”
Control Eng. Pract.
,
31
, pp.
50
62
.
120.
Yoo
,
W. S.
,
Kim
,
J. D.
, and
Na
,
S. J.
,
2001
, “
A Study on a Mobile Platform-Manipulator Welding System for Horizontal Fillet Joints
,”
Mechatronics
,
11
(
7
), pp.
853
868
.
121.
Hormann
,
A.
, and
Rembold
,
U.
,
1991
, “
Development of an Advanced Robot for Autonomous Assembly
,”
Proceedings 1991 IEEE International Conference on Robotics and Automation
,
Sacramento, CA
,
Apr. 9–11
,
IEEE Computer Society
, pp.
2452
2457
.
122.
Li
,
F.
,
Jiang
,
Q.
,
Quan
,
W.
,
Song
,
R.
, and
Li
,
Y.
,
2019
, “
Manipulation Skill Acquisition for Robotic Assembly Using Deep Reinforcement Learning
,”
2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Hong Kong, China
,
July 8–12
, pp.
13
18
.
123.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2014
,
Additive Manufacturing Technologies
, Vol.
17
,
Springer
,
Cham, Switzerland
.
124.
Tiryaki
,
M. E.
,
Zhang
,
X.
, and
Pham
,
Q. -C.
,
2019
, “
Printing-While-Moving: A New Paradigm for Large-Scale Robotic 3d Printing
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
The Venetian Macao, Macau
,
Nov. 4–8
,
IEEE
, pp.
2286
2291
.
125.
Keating
,
S. J.
,
Leland
,
J. C.
,
Cai
,
L.
, and
Oxman
,
N.
,
2017
, “
Toward Site-Specific and Self-Sufficient Robotic Fabrication on Architectural Scales
,”
Sci. Robot.
,
2
(
5
), p.
eaam8986
.
126.
Giftthaler
,
M.
,
Sandy
,
T.
,
Dörfler
,
K.
,
Brooks
,
I.
,
Buckingham
,
M.
,
Rey
,
G.
,
Kohler
,
M.
,
Gramazio
,
F.
, and
Buchli
,
J.
,
2017
, “
Mobile Robotic Fabrication at 1: 1 Scale: The In Situ Fabricator
,”
Construction Robot.
,
1
(
1–4
), pp.
3
14
.
127.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2020
, “
Expanding Capabilities of Additive Manufacturing Through Use of Robotics Technologies: A Survey
,”
Addit. Manuf.
,
31
, p.
100933
.
128.
Yablonina
,
M.
,
Prado
,
M.
,
Baharlou
,
E.
,
Schwinn
,
T.
, and
Menges
,
A.
,
2017
, “
Mobile Robotic Fabrication System for Filament Structures
,”
Fabricate Rethinking Design Construction
,
3
, pp.
202
209
.
129.
McCrea
,
J.
,
Cerri
,
J. T.
, and
Hartsfield
,
C. R.
,
2018
, “
Design of A Zero-Gravity, Vacuum-Based 3D Printer Robot for Use of In-Space Satellite Assembly
,”
2018 AIAA Aerospace Sciences Meeting
,
Kissimmee, FL
,
Jan. 8–12
, p.
2201
.
130.
Zhang
,
X.
,
Li
,
M.
,
Lim
,
J. H.
,
Weng
,
Y.
,
Tay
,
Y. W. D.
,
Pham
,
H.
, and
Pham
,
Q.-C.
,
2018
, “
Large-Scale 3D Printing by a Team of Mobile Robots
,”
Autom. Construction
,
95
, pp.
98
106
.
131.
Sujan
,
V. A.
, and
Dubowsky
,
S.
,
2003
, “
An Optimal Information Method for Mobile Manipulator Dynamic Parameter Identification
,”
IEEE/ASME Trans. Mechatron.
,
8
(
2
), pp.
215
225
.
132.
Peng
,
J.
,
Yu
,
J.
, and
Wang
,
J.
,
2014
, “
Robust Adaptive Tracking Control for Nonholonomic Mobile Manipulator With Uncertainties
,”
ISA Trans.
,
53
(
4
), pp.
1035
1043
.
133.
Viet
,
T. D.
,
Doan
,
P. T.
,
Hung
,
N.
,
Kim
,
H. K.
, and
Kim
,
S. B.
,
2012
, “
Tracking Control of a Three-Wheeled Omnidirectional Mobile Manipulator System With Disturbance and Friction
,”
J. Mech. Sci. Technol.
,
26
(
7
), pp.
2197
2211
.
134.
Bhatt
,
P. M.
,
Rajendran
,
P.
,
McKay
,
K.
, and
Gupta
,
S. K.
,
2019
, “
Context-Dependent Compensation Scheme to Reduce Trajectory Execution Errors for Industrial Manipulators
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
,
IEEE
, pp.
5578
5584
.
135.
Danielsen Evjemo
,
L.
,
Moe
,
S.
,
Gravdahl
,
J. T.
,
Roulet-Dubonnet
,
O.
,
Gellein
,
L. T.
, and
Brøtan
,
V.
,
2017
, “
Additive Manufacturing by Robot Manipulator: An Overview of the State-of-the-Art and Proof-of-Concept Results
,”
2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Limassol, Cyprus
,
Sept. 12–15
, pp.
1
8
.
136.
Urhal
,
P.
,
Weightman
,
A.
,
Diver
,
C.
, and
Bartolo
,
P.
,
2019
, “
Robot Assisted Additive Manufacturing: A Review
,”
Robot. Comput. Integr. Manuf.
,
59
(
C
), pp.
335
345
.
137.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
, and
Gupta
,
S. K.
,
2020
, “
Building Free-Form Thin Shell Parts Using Supportless Extrusion-Based Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101003
.
138.
Bhatt
,
P. M.
,
Kabir
,
A. M.
,
Peralta
,
M.
,
Bruck
,
H. A.
, and
Gupta
,
S. K.
,
2019
, “
A Robotic Cell for Performing Sheet Lamination-Based Additive Manufacturing
,”
Addit. Manuf.
,
27
, pp.
278
289
.
139.
Messina
,
G.
,
Burgassi
,
S.
,
Messina
,
D.
,
Montagnani
,
V.
, and
Cevenini
,
G.
,
2015
, “
A New UV-Led Device for Automatic Disinfection of Stethoscope Membranes
,”
Amer. J. Infection Control
,
43
(
10
), pp.
e61
e66
.
140.
Hu
,
D.
,
Zhong
,
H.
,
Li
,
S.
,
Tan
,
J.
, and
He
,
Q.
,
2020
, “
Segmenting Areas of Potential Contamination for Adaptive Robotic Disinfection in Built Environments
,”
Build. Environ.
,
184
, p.
107226
.
141.
Sanchez
,
A. G.
, and
Smart
,
W. D.
,
2021
, “
Surface Disinfection using Ultraviolet Lightwith a Mobile Manipulation Robot
,”
ArXiv
. https://arxiv.org/abs/2104.10739
142.
Yamamoto
,
T.
,
Terada
,
K.
,
Ochiai
,
A.
,
Saito
,
F.
,
Asahara
,
Y.
, and
Murase
,
K.
,
2018
, “
Development of the Research Platform of a Domestic Mobile Manipulator Utilized for International Competition and Field Test
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
7675
7682
.
143.
Lu
,
L.
, and
Wen
,
J. T.
,
2017
, “
Baxter-on-Wheels (Bow): An Assistive Mobile Manipulator for Mobility Impaired Individuals
,” Trends in Control and Decision-Making for Human–Robot Collaboration Systems,
Springer
, pp.
41
63
.
144.
King
,
C.-H.
,
Chen
,
T. L.
,
Fan
,
Z.
,
Glass
,
J. D.
, and
Kemp
,
C. C.
,
2012
, “
Dusty: An Assistive Mobile Manipulator That Retrieves Dropped Objects for People With Motor Impairments
,”
Disability Rehabilit. Assist. Technol.
,
7
(
2
), pp.
168
179
.
145.
Smarr
,
C.-A.
,
Mitzner
,
T. L.
,
Beer
,
J. M.
,
Prakash
,
A.
,
Chen
,
T. L.
,
Kemp
,
C. C.
, and
Rogers
,
W. A.
,
2014
, “
Domestic Robots for Older Adults: Attitudes, Preferences, and Potential
,”
Int. J. Social Robot.
,
6
(
2
), pp.
229
247
.
146.
Kapusta
,
A.
,
Chitalia
,
Y.
,
Park
,
D.
, and
Kemp
,
C. C.
,
2016
, “
Collaboration Between a Robotic Bed and a Mobile Manipulator May Improve Physical Assistance for People With Disabilities
,” https://smartech.gatech.edu/handle/1853/56462
147.
Mersha
,
A. Y.
,
de Kinkelder
,
R.
, and
Bekke
,
D.
,
2018
, “
Affordable Modular Mobile Manipulator for Domestic Applications
,”
2018 19th International Conference on Research and Education in Mechatronics (REM)
,
Delft, Netherlands
,
June 7–8
,
IEEE
, pp.
141
146
.
148.
Stückler
,
J.
,
Steffens
,
R.
,
Holz
,
D.
, and
Behnke
,
S.
,
2013
, “
Efficient 3d Object Perception and Grasp Planning for Mobile Manipulation in Domestic Environments
,”
Rob. Auton. Syst.
,
61
(
10
), pp.
1106
1115
.
149.
Mitrevski
,
A.
,
Padalkar
,
A.
,
Nguyen
,
M.
, and
Plöger
,
P. G.
,
2019
, “
‘Lucy, Take the Noodle Box!’: Domestic Object Manipulation Using Movement Primitives and Whole Body Motion
,”
Robot World Cup
,
Sydney, Australia
,
July 2–8
,
Springer
, pp.
189
200
.
150.
Qi
,
N.
,
Zhao
,
L.
,
Li
,
R.
, and
Wang
,
K.
,
2012
, “
Dual-Arm Service Robots for Mobile Operation in Indoor Environment
,”
2012 IEEE International Conference on Mechatronics and Automation
,
Chengdu, China
,
Aug. 5–8
,
IEEE
, pp.
1898
1903
.
151.
Mucchiani
,
C.
,
Cacchione
,
P.
,
Torres
,
W.
,
Johnson
,
M. J.
, and
Yim
,
M.
,
2020
, “
Exploring Low-Cost Mobile Manipulation for Elder Care Within a Community Based Setting
,”
J. Intel. Robotic Syst.
,
98
(
1
), pp.
59
70
.
152.
Yamamoto
,
T.
,
Terada
,
K.
,
Ochiai
,
A.
,
Saito
,
F.
,
Asahara
,
Y.
, and
Murase
,
K.
,
2019
, “
Development of Human Support Robot as the Research Platform of a Domestic Mobile Manipulator
,”
ROBOMECH J.
,
6
(
1
), p.
4
.
153.
Yamamoto
,
T.
,
Takagi
,
Y.
,
Ochiai
,
A.
,
Iwamoto
,
K.
,
Itozawa
,
Y.
,
Asahara
,
Y.
,
Yokochi
,
Y.
, and
Ikeda
,
K.
,
2019
, “
Human Support Robot as Research Platform of Domestic Mobile Manipulator
,”
Robot World Cup
,
Sydney, Australia
,
July 2–8
,
Springer
, pp.
457
465
.
154.
Choi
,
Y. S.
,
Chen
,
T.
,
Jain
,
A.
,
Anderson
,
C.
,
Glass
,
J. D.
, and
Kemp
,
C. C.
,
2009
, “
Hand It Over or Set It Down: A User Study of Object Delivery With an Assistive Mobile Manipulator
,”
RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication
,
Toyama, Japan
,
Sept. 27–Oct. 2
,
IEEE
, pp.
736
743
.
155.
Lu
,
L.
, and
Wen
,
J. T.
,
2017
, “
Human-Directed Coordinated Control of an Assistive Mobile Manipulator
,”
Int. J. Intell. Robot. Appl.
,
1
(
1
), pp.
104
120
.
156.
Zhou
,
J.
,
Yan
,
J.
,
Wei
,
T.
,
Wu
,
K.
,
Chen
,
X.
, and
Hu
,
S.
,
2015
, “
Sharp Corner/Edge Recognition in Domestic Environments Using Rgb-d Camera Systems
,”
IEEE Trans. Circuits Syst. II: Express Briefs
,
62
(
10
), pp.
987
991
.
157.
Guo
,
W.
,
Wang
,
J.
, and
Chen
,
W.
,
2014
, “
A Manipulability Improving Scheme for Opening Unknown Doors With Mobile Manipulator
,”
2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014)
,
Bali, Indonesia
,
Dec. 5–10
,
IEEE
, pp.
1362
1367
.
158.
Chitta
,
S.
,
Cohen
,
B.
, and
Likhachev
,
M.
,
2010
, “
Planning for Autonomous Door Opening With a Mobile Manipulator
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AL
,
May 3–8
,
IEEE
, pp.
1799
1806
.
159.
Kim
,
D. W.
,
Kang
,
J. -H.
, and
Park
,
G. -T.
,
2010
, “
Door-Opening Behaviour by Home Service Robot in a House
,”
Int. J. Robot. Autom.
,
25
(
4
), p.
271
.
160.
Kim
,
D.
,
Kang
,
J.-H.
,
Hwang
,
C.-S.
, and
Park
,
G.-T.
,
2004
, “
Mobile Robot for Door Opening in a House
,”
International Conference on Knowledge-Based and Intelligent Information and Engineering Systems
,
Springer
, pp.
596
602
.
161.
Elliott
,
S.
, and
Cakmak
,
M.
,
2018
, “
Robotic Cleaning Through Dirt Rearrangement Planning With Learned Transition Models
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Changchun, China
,
Aug. 5–8
,
IEEE
, pp.
1623
1630
.
162.
Pan
,
G.
,
Yang
,
F.
, and
Chen
,
M.
,
2018
, “
Kinematic Control of a Dual-Arm Humanoid Mobile Cooking Robot
,”
Proceedings of the 12th International Convention on Rehabilitation Engineering and Assistive Technology, Singapore Therapeutic
,
Assistive & Rehabilitative Technologies (START) Centre
, pp.
308
311
.
163.
Watanabe
,
Y.
,
Nagahama
,
K.
,
Yamazaki
,
K.
,
Okada
,
K.
, and
Inaba
,
M.
,
2013
, “
Cooking Behavior With Handling General Cooking Tools Based on a System Integration for a Life-Sized Humanoid Robot
,”
Paladyn, J. Behavioral Robot.
,
4
(
2
), pp.
63
72
.
164.
Yamazaki
,
K.
,
Watanabe
,
Y.
,
Nagahama
,
K.
,
Okada
,
K.
, and
Inaba
,
M.
,
2010
, “
Recognition and Manipulation Integration for a Daily Assistive Robot Working on Kitchen Environments
,”
2010 IEEE International Conference on Robotics and Biomimetics
, pp.
196
201
.
165.
Yu
,
H.
,
Li
,
L.
,
Chen
,
J.
,
Wang
,
Y.
,
Wu
,
Y.
,
Li
,
M.
,
Li
,
H.
,
Jiang
,
Z.
,
Liu
,
X.
, and
Arai
,
T.
,
2019
, “
Mobile Robot Capable of Crossing Floors for Library Management
,”
2019 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Marina Bay Sands, Singapore
,
May 29–June 3
,
IEEE
, pp.
2540
2545
.
166.
Petersson
,
L.
,
Austin
,
D.
, and
Kragic
,
D.
,
2000
, “
High-Level Control of a Mobile Manipulator for Door Opening
,”
IEEE Int. Conf. Intell. Robot. Syst.
,
3
, pp.
2333
2338
.
167.
Li
,
J.
,
Li
,
Z.
, and
Hauser
,
K.
,
2017
, “
A Study of Bidirectionally Telepresent Tele-action During Robot-Mediated Handover
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
2890
2896
.
168.
Li
,
Z.
,
Moran
,
P.
,
Dong
,
Q.
,
Shaw
,
R. J.
, and
Hauser
,
K.
,
2017
, “
Development of a Tele-Nursing Mobile Manipulator for Remote Care-Giving in Quarantine Areas
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
3581
3586
.
169.
Li
,
Z.
, and
Hauser
,
K.
,
2015
, “
Ebolabot: Progress Toward a Tele-Nursing Robotic System for Ebola Patient Treatment
,”
Science and Systems: RSS 2015 Workshop on Robotics for Advance Response to Epidemics (RARE)
,
Rome, Italy
,
June 15
.
170.
Stańczyk
,
B.
,
Kurnicki
,
A.
, and
Arent
,
K.
,
2016
, “
Logical Architecture of Medical Telediagnostic Robotic System
,”
2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR)
,
IEEE
, pp.
200
205
.
171.
Dasanayake
,
D.
,
Gunasekara
,
P.
,
Dabare
,
S.
,
Wickramasinghe
,
H.
,
Sandharenu
,
K.
,
Fernando
,
S.
, and
Jayasekera
,
J.
,
2017
, “
Smart Hospital Ward Management System With Mobile Robot WARDBOT: An Efficient Management Solution for Hospital Ward
.” http://ir.kdu.ac.lk/bitstream/handle/345/1763/013.pdf?sequence=1&isAllowed=y
172.
Dasanayake
,
D.
,
Gunasekara
,
P.
,
Wickramasinghe
,
H.
,
Fernando
,
S.
, and
Kulasekera
,
A.
,
2018
, “
Automated Hospital Ward Management System Interacting With Mobile Robot Platform Wdbot
,”
2018 IEEE International Conference on Mechatronics and Automation (ICMA)
,
IEEE
, pp.
557
562
.
173.
Bemelmans
,
R.
,
Gelderblom
,
G. J.
,
Jonker
,
P.
, and
de Witte
,
L.
,
2012
, “
Socially Assistive Robots in Elderly Care: A Systematic Review Into Effects and Effectiveness
,”
J. Am. Med. Dir. Assoc.
,
13
(
2
), pp.
114
120
.
174.
Martinez-Martin
,
E.
,
Escalona
,
F.
, and
Cazorla
,
M.
,
2020
, “
Socially Assistive Robots for Older Adults and People With Autism: An Overview
,”
Electronics
,
9
(
2
), p.
367
.
175.
Agah
,
A.
, and
Tanie
,
K.
,
1997
, “
Human Interaction With a Service Robot: Mobile-Manipulator Handing Over an Object to a Human
,”
Proceedings of International Conference on Robotics and Automation
,
Gothenburg, Sweden
,
Aug. 24
, Vol.
1
, pp.
575
580
.
176.
Park
,
D.
,
Hoshi
,
Y.
,
Mahajan
,
H. P.
,
Kim
,
H. K.
,
Erickson
,
Z.
,
Rogers
,
W. A.
, and
Kemp
,
C. C.
,
2020
, “
Active Robot-Assisted Feeding With a General-Purpose Mobile Manipulator: Design, Evaluation, and Lessons Learned
,”
Rob. Auton. Syst.
,
124
, p.
103344
.
177.
Li
,
Z.
,
Moran
,
P.
,
Dong
,
Q.
,
Shaw
,
R. J.
, and
Hauser
,
K.
,
2017
, “
Development of a Tele-Nursing Mobile Manipulator for Remote Care-Giving in Quarantine Areas
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
3581
3586
.
178.
Kapusta
,
A. S.
,
Grice
,
P. M.
,
Clever
,
H. M.
,
Chitalia
,
Y.
,
Park
,
D.
, and
Kemp
,
C. C.
,
2019
, “
A System for Bedside Assistance That Integrates a Robotic Bed and a Mobile Manipulator
,”
PLoS. One.
,
14
(
10
), pp.
1
25
.
179.
Srinivasa
,
S. S.
,
Berenson
,
D.
,
Cakmak
,
M.
,
Collet
,
A.
,
Dogar
,
M. R.
,
Dragan
,
A. D.
,
Knepper
,
R. A.
,
Niemueller
,
T.
,
Strabala
,
K.
,
Vande Weghe
,
M.
, and
Ziegler
,
J.
,
2012
, “
Herb 2.0: Lessons Learned From Developing a Mobile Manipulator for the Home
,”
Proc. IEEE
,
100
(
8
), pp.
2410
2428
.
180.
Bascetta
,
L.
,
Baur
,
M.
, and
Gruosso
,
G.
,
2017
, “
Robi’: A Prototype Mobile Manipulator for Agricultural Applications
,”
Electronics
,
6
(
2
), p.
39
.
181.
Saravanan
,
S.
,
Aravinth
,
S. S.
, and
Rameshkumar
,
M.
,
2017
, “
A Novel Approach in Agriculture Automation for Sugarcane Farming by Human Assisting Care Robot
,”
Int. J. Agricultural Sci. Res.
,
7
(
4
), pp.
107
112
.
182.
Lu
,
L.
, and
Wen
,
J. T.
,
2015
, “
Human-Directed Robot Motion/force Control for Contact Tasks in Unstructured Environments
,”
2015 IEEE International Conference on Automation Science and Engineering (CASE)
,
Gothenburg, Sweden
,
Aug. 24–28
, pp.
1165
1170
.
183.
Wu
,
X.
,
Wang
,
Y.
, and
Dang
,
X.
,
2014
, “
Robust Adaptive Sliding-Mode Control of Condenser-Cleaning Mobile Manipulator Using Fuzzy Wavelet Neural Network
,”
Fuzzy Sets Syst.
,
235
, pp.
62
82
. Theme: Control and Applications.
184.
Castaman
,
N.
,
Tosello
,
E.
,
Antonello
,
M.
,
Bagarello
,
N.
,
Gandin
,
S.
,
Carraro
,
M.
,
Munaro
,
M.
,
Bortoletto
,
R.
,
Ghidoni
,
S.
,
Menegatti
,
E.
, and
Pagello
,
E.
,
2017
, “
Rur53: An Unmanned Ground Vehicle for Navigation, Recognition and Manipulation
,”
Adv. Robot.
,
35
(
1
), pp.
1
18
.
185.
Bengel
,
M.
,
Pfeiffer
,
K.
,
Graf
,
B.
,
Bubeck
,
A.
, and
Verl
,
A.
,
2009
, “
Mobile Robots for Offshore Inspection and Manipulation
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
3317
3322
.
186.
Ayoade
,
A. A.
,
2015
, “
Navigation and Control of a Mobile Manipulator for Inspection
,” Master’s thesis,
Colorado School of Mines
,
Golden, CO
, p.
12
.
187.
Industries
,
M. H.
,
2020
, “
Development of Robots for Nuclear Power Plants
,” IAEA Bulletin,
27
(
3
), pp.
31
38
.
188.
Tanigaki
,
K.
,
Fujiura
,
T.
,
Akase
,
A.
, and
Imagawa
,
J.
,
2008
, “
Cherry-Harvesting Robot
,”
Comput. Electron. Agriculture
,
63
(
1
), pp.
65
72
.
189.
Hayashi
,
S.
,
Shigematsu
,
K.
,
Yamamoto
,
S.
,
Kobayashi
,
K.
,
Kohno
,
Y.
,
Kamata
,
J.
, and
Kurita
,
M.
,
2010
, “
Evaluation of a Strawberry-Harvesting Robot in a Field Test
,”
Biosyst. Eng.
,
105
(
2
), pp.
160
171
.
190.
Hayashi
,
S.
,
Ganno
,
K.
,
Ishii
,
Y.
, and
Tanaka
,
I.
,
2002
, “
Robotic Harvesting System for Eggplants
,”
Japan Agricultural Res. Q.: JARQ
,
36
(
3
), pp.
163
168
.
191.
Arima
,
S.
,
1999
, “
Cucumber Harvesting Robot and Plant Training System
,”
J. Robot. Mechatron.
,
11
(
3
), pp.
208
212
.
192.
Liu
,
T.-H.
,
Zeng
,
X.-R.
, and
Ke
,
Z.-H.
,
2011
, “
Design and Prototyping a Harvester for Litchi Picking
,”
2011 Fourth International Conference on Intelligent Computation Technology and Automation
,
Gammarth-Tunis, Tunisia
,
May 5–7
, Vol.
2
, pp.
39
42
.
193.
Aljanobi
,
A. A.
,
Al-hamed
,
S. A.
, and
Al-Suhaibani
,
S. A.
,
2010
, “
A Setup of Mobile Robotic Unit for Fruit Harvesting
,”
19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010)
,
Balatonfured, Hungary
,
June 23–27
, pp.
105
108
.
194.
Nagatani
,
K.
,
Kiribayashi
,
S.
,
Okada
,
Y.
,
Otake
,
K.
,
Yoshida
,
K.
,
Tadokoro
,
S.
,
Nishimura
,
T.
,
Yoshida
,
T.
,
Koyanagi
,
E.
,
Fukushima
,
M.
, and
Kawatsuma
,
S.
,
2013
, “
Emergency Response to the Nuclear Accident at the Fukushima Daiichi Nuclear Power Plants Using Mobile Rescue Robots
,”
J. Field Robot.
,
30
(
1
), pp.
44
63
.
195.
Gao
,
W.
,
Wang
,
W.
,
Zhu
,
H.
,
Zhao
,
S.
,
Huang
,
G.
, and
Du
,
Z.
,
2019
, “
Irradiation Test and Hardness Design for Mobile Rescue Robot in Nuclear Environment
,”
Industrial Robot Int. J. Robot. Res. Applic.
,
46
(
6
), pp.
851
862
.
196.
Takemori
,
T.
,
Miyake
,
M.
,
Hirai
,
T.
,
Wang
,
X.
,
Fukao
,
Y.
,
Adachi
,
M.
,
Yamaguchi
,
K.
,
Tanishige
,
S.
,
Nomura
,
Y.
,
Matsuno
,
F.
, and
Fujimoto
,
T.
,
2020
, “
Development of the Multifunctional Rescue Robot Fuhga2 and Evaluation at the World Robot Summit 2018
,”
Adv. Robot.
,
34
(
2
), pp.
119
131
.
197.
Guarnieri
,
M.
,
Kurazume
,
R.
,
Masuda
,
H.
,
Inoh
,
T.
,
Takita
,
K.
,
Debenest
,
P.
,
Hodoshima
,
R.
,
Fukushima
,
E.
, and
Hirose
,
S.
,
2009
, “
Helios System: A Team of Tracked Robots for Special Urban Search and Rescue Operations
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
,
IEEE
, pp.
2795
2800
.
198.
Ohno
,
K.
,
Morimura
,
S.
,
Tadokoro
,
S.
,
Koyanagi
,
E.
, and
Yoshida
,
T.
,
2007
, “
Semi-Autonomous Control System of Rescue Crawler Robot Having Flippers for Getting Over Unknown-Steps
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
,
IEEE
, pp.
3012
3018
.
199.
Yoshida
,
T.
,
Nagatani
,
K.
,
Koyanagi
,
E.
,
Hada
,
Y.
,
Ohno
,
K.
,
Maeyama
,
S.
,
Akiyama
,
H.
,
Yoshida
,
K.
, and
Tadokoro
,
S.
,
2010
, “
Field Experiment on Multiple Mobile Robots Conducted in an Underground Mall
,”
Field and Service Robotics
,
Cambridge, MA
,
July 14–16
,
Springer
, pp.
365
375
.
200.
Casper
,
J.
, and
Murphy
,
R. R.
,
2003
, “
Human-Robot Interactions During the Robot-Assisted Urban Search and Rescue Response at the World Trade Center
,”
IEEE Trans. Syst. Man Cybernetics, Part B (Cybernetics)
,
33
(
3
), pp.
367
385
.
201.
Sturm
,
J.
,
Engelhard
,
N.
,
Endres
,
F.
,
Burgard
,
W.
, and
Cremers
,
D.
,
2012
, “
A Benchmark for the Evaluation of Rgb-d Slam Systems
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
, pp.
573
580
.
202.
Aguiar
,
A. S.
,
Cunha
,
J. B.
,
Sobreira
,
H.
, and
Sousa
,
A. J.
,
2020
, “
Localization and Mapping for Robots in Agriculture and Forestry: A Survey
,”
Robotics
,
9
(
4
), p.
97
.
203.
Zhang
,
Y.
,
Gao
,
F.
, and
Tian
,
L.
,
2008
, “
Ins/gps Integrated Navigation for Wheeled Agricultural Robot Based on Sigma-Point Kalman Filter
,”
2008 Asia Simulation Conference – 7th International Conference on System Simulation and Scientific Computing
,
Kuala Lampur, Malaysia
,
May 13–15
, pp.
1425
1431
.
204.
Conceição
,
T.
,
Neves dos Santos
,
F.
,
Costa
,
P.
, and
Moreira
,
A. P.
,
2018
, “
Robot Localization System in a Hard Outdoor Environment
,”
ROBOT 2017: Third Iberian Robotics Conference
,
Seville, Spain
,
Nov. 22–24
,
Springer International Publishing
, pp.
215
227
.
205.
Bac
,
C. W.
,
Hemming
,
J.
,
van Tuijl
,
B.
,
Barth
,
R.
,
Wais
,
E.
, and
van Henten
,
E. J.
,
2017
, “
Performance Evaluation of a Harvesting Robot for Sweet Pepper
,”
J. Field Robot.
,
34
(
6
), pp.
1123
1139
.
206.
Feng
,
Q.
,
Zou
,
W.
,
Fan
,
P.
,
Zhang
,
C.
, and
Wang
,
X.
,
2018
, “
Design and Test of Robotic Harvesting System for Cherry Tomato
,”
Int. J. Agricultural Biol. Eng.
,
11
(
1
), pp.
96
100
.
207.
Kitamura
,
S.
, and
Oka
,
K.
,
2005
, “
Recognition and Cutting System of Sweet Pepper for Picking Robot in Greenhouse Horticulture
,”
2005 IEEE International Conference Mechatronics and Automation
,
Ontario, Canada
,
July 20–Aug. 1
, Vol.
4
, pp.
1807
1812
.
208.
Kusumam
,
K.
,
Krajník
,
T.
,
Pearson
,
S.
,
Duckett
,
T.
, and
Cielniak
,
G.
,
2017
, “
3d-Vision Based Detection, Localization, and Sizing of Broccoli Heads in the Field
,”
J. Field Robot.
,
34
(
8
), pp.
1505
1518
.
209.
Onishi
,
Y.
,
Yoshida
,
T.
,
Kurita
,
H.
,
Fukao
,
T.
,
Arihara
,
H.
, and
Iwai
,
A.
,
2019
, “
An Automated Fruit Harvesting Robot by Using Deep Learning
,”
ROBOMECH J.
,
6
(
1
), pp.
1
8
.
210.
Quaglia
,
G.
,
Visconte
,
C.
,
Scimmi
,
L. S.
,
Melchiorre
,
M.
,
Cavallone
,
P.
, and
Pastorelli
,
S.
,
2019
, “Robot Arm and Control Architecture Integration on a Ugv for Precision Agriculture,”
Advances in Mechanism and Machine Science
,
Uhl
,
T.
, ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
2339
2348
.
211.
Ponnambalam
,
V. R.
,
Fentanes
,
J. P.
,
Das
,
G.
,
Cielniak
,
G.
,
Gjevestad
,
J. G. O.
, and
From
,
P. J.
,
2020
, “
Agri-Cost-Maps—Integration of Environmental Constraints Into Navigation Systems for Agricultural Robots
,”
2020 6th International Conference on Control, Automation and Robotics (ICCAR)
,
Singapore
,
Apr. 20–23
, pp.
214
220
.
212.
Binch
,
A.
,
Das
,
G. P.
,
Pulido Fentanes
,
J.
, and
Hanheide
,
M.
,
2020
, “
Context Dependant Iterative Parameter Optimisation for Robust Robot Navigation
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
3937
3943
.
213.
Fue
,
K.
,
Porter
,
W.
,
Barnes
,
E.
, and
Rains
,
G.
,
2020
, “
An Extensive Review of Mobile Agricultural Robotics for Field Operations: Focus on Cotton Harvesting
,”
AgriEngineering
,
2
(
1
), pp.
150
174
.
214.
Pretto
,
A.
,
Aravecchia
,
S.
,
Burgard
,
W.
,
Chebrolu
,
N.
,
Dornhege
,
C.
,
Falck
,
T.
, and
Fleckenstein
,
F.
, et al.,
2019
, “
Building an Aerial-Ground Robotics System for Precision Farming: An Adaptable Solution
,” IEEE Robotics & Automation Magazine,
28
(
3
), pp.
29
49
.
215.
Xiong
,
Y.
,
Ge
,
Y.
,
Grimstad
,
L.
, and
From
,
P. J.
,
2020
, “
An Autonomous Strawberry-Harvesting Robot: Design, Development, Integration, and Field Evaluation
,”
J. Field Robot.
,
37
(
2
), pp.
202
224
.
216.
Fue
,
K. G.
,
Porter
,
W. M.
,
Barnes
,
E. M.
, and
Rains
,
G. C.
,
2020
, “
An Extensive Review of Mobile Agricultural Robotics for Field Operations: Focus on Cotton Harvesting
,”
AgriEngineering
,
2
(
1
), pp.
150
174
.
217.
Sakai
,
S.
,
Iida
,
M.
,
Osuka
,
K.
, and
Umeda
,
M.
,
2008
, “
Design and Control of a Heavy Material Handling Manipulator for Agricultural Robots
,”
Autonomous Robots
,
25
(
3
), pp.
189
204
.
218.
Thompson
,
P.
,
Rabatel
,
G.
,
Pierrot
,
F.
,
Liegeois
,
A.
, and
Sevila
,
F.
,
1995
, “
Performance Comparison of Various Control Strategies for a Mobile Manipulator
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, Vol.
3
, pp.
473
479
.
219.
González
,
R.
,
Fiacchini
,
M.
,
Guzmán
,
J. L.
,
Álamo
,
T.
, and
Rodríguez
,
F.
,
2011
, “
Robust Tube-Based Predictive Control for Mobile Robots in Off-Road Conditions
,”
Rob. Auton. Syst.
,
59
(
10
), pp.
711
726
.
220.
Bechar
,
A.
, and
Vigneault
,
C.
,
2016
, “
Agricultural Robots for Field Operations: Concepts and Components
,”
Biosyst. Eng.
,
149
(
9
), pp.
94
111
.
221.
Bechar
,
A.
, and
Vigneault
,
C.
,
2017
, “
Agricultural Robots for Field Operations. Part 2: Operations and Systems
,”
Biosyst. Eng.
,
153
, pp.
110
128
.
222.
Hayes-Roth
,
B.
,
1985
, “
A Blackboard Architecture for Control
,”
Arti. Intell.
,
26
(
3
), pp.
251
321
.
223.
Nassal
,
U.
,
Damm
,
M.
, and
Lüth
,
T.
,
1993
, “
Mobile Manipulation—kopplung von Mobiler Plattform und Manipulatoren für ein autonomes Robotersystem
,” Autonomous Mobile Systems, pp.
342
354
.
224.
Pin
,
F.
,
Beckerman
,
M.
,
Spelt
,
P.
,
Robinson
,
J.
, and
Weisbin
,
C.
,
1989
, “
Autonomous Mobile Robot Research Using the Hermies—iii Robot
,”
Proceedings IEEE/RSJ International Workshop on Intelligent Robots and Systems, (IROS ’89) The Autonomous Mobile Robots and its Applications
,
Tsukuba, Japan
,
Sept. 4–6
, pp.
251
256
.
225.
Krotkov
,
E.
,
Simmons
,
R.
, and
Whittaker
,
W.
,
1995
, “
Ambler: Performance of a Six-Legged Planetary Rover
,”
Acta Astronautica
,
35
(
1
), pp.
75
81
.
226.
Cardenas
,
A.
,
Quiroz
,
O.
,
Hernandez
,
R.
,
Medellin-Castillo
,
H. I.
,
González
,
A.
,
Maya
,
M.
, and
Piovesan
,
D.
,
2021
, “
Vision-Based Control of a Mobile Manipulator With an Adaptable-Passive Suspension for Unstructured Environments
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050908
.
227.
Mbede
,
J. B.
,
Ele
,
P.
,
Mveh-Abia
,
C. M.
,
Toure
,
Y.
,
Graefe
,
V.
, and
Ma
,
S.
,
2005
, “
Intelligent Mobile Manipulator Navigation Using Adaptive Neuro-Fuzzy Systems
,”
Inf. Sci. (Ny).
,
171
(
4
), pp.
447
474
.
228.
Song
,
T.
,
Xi
,
F. J.
,
Guo
,
S.
,
Tu
,
X.
, and
Li
,
X.
,
2018
, “
Slip Analysis for a Wheeled Mobile Manipulator
,”
ASME J. Dyn. Syst. Meas. Control.
,
140
(
2
), p.
021005
.
229.
Liu
,
Y.
, and
Liu
,
G.
,
2009
, “
Modeling of Tracked Mobile Manipulators with Consideration of Track-Terrain and Vehicle-manipulator Interactions
,”
Rob. Auton. Syst.
,
57
(
11
), pp.
1065
1074
.
230.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
New York
.
231.
Thakar
,
S.
,
2021
, “
Planning for Mobile Manipulation
,” Ph.D. thesis,
University of Southern California
,
Los Angeles, CA
.
232.
Wolfe
,
J.
,
Marthi
,
B.
, and
Russell
,
S.
,
2010
, “
Combined Task and Motion Planning for Mobile Manipulation
,”
Twentieth International Conference on Automated Planning and Scheduling (ICAPS)
,
Toronto, Canada
,
May 12–16
.
233.
Akbari
,
A.
,
2020
, “
Combining Task and Motion Planning for Mobile Manipulators
.”
234.
Cambon
,
S.
,
Alami
,
R.
, and
Gravot
,
F.
,
2009
, “
A Hybrid Approach to Intricate Motion, Manipulation and Task Planning
,”
Int. J. Robot. Res.
,
28
(
1
), pp.
104
126
.
235.
Saoji
,
S.
, and
Rosell
,
J.
,
2020
, “
Flexibly Configuring Task and Motion Planning Problems for Mobile Manipulators
,”
2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Vienna, Austria
,
Sept. 8–11
, Vol.
1
,
IEEE
, pp.
1285
1288
.
236.
Thakar
,
S.
,
Kabir
,
A.
,
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2019
, “
Task Assignment and Motion Planning for Bi-Manual Mobile Manipulation
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22–26
,
IEEE
, pp.
910
915
.
237.
Kabir
,
A. M.
,
Thakar
,
S.
,
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2020
, “
Incorporating Motion Planning Feasibility Considerations During Task-Agent Assignment to Perform Complex Tasks Using Mobile Manipulators
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
5663
5670
.
238.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J. -C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE. Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
.
239.
Rickert
,
M.
,
Sieverling
,
A.
, and
Brock
,
O.
,
2014
, “
Balancing Exploration and Exploitation in Sampling-Based Motion Planning
,”
IEEE Trans. Robot.
,
30
(
6
), pp.
1305
1317
.
240.
Rajendran
,
P.
,
Thakar
,
S.
,
Kabir
,
A.
,
Shah
,
B.
, and
Gupta
,
S. K.
,
2019
, “
Context-Dependent Search for Generating Paths for Redundant Manipulators in Cluttered Environments
,”
IEEE International Conference on Intelligent Robots and Systems (IROS)
,
The Venetian Macao, Macau
,
Nov. 2–8
. http://dx.doi.og/10.1109/IROS40897.2019.8967865
241.
Rajendran
,
P.
,
Thakar
,
S.
, and
Gupta
,
S. K.
,
2019
, “
User-Guided Path Planning for Redundant Manipulators in Highly Constrained Work Environments
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22–26
,
IEEE
, pp.
1212
1217
.
242.
Rajendran
,
P.
,
Thakar
,
S.
,
Bhatt
,
P. M.
,
Kabir
,
A. M.
, and
Gupta
,
S. K.
,
2021
, “
Strategies for Speeding Up Manipulator Path Planning to Find High Quality Paths in Cluttered Environments
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011009
.
243.
Pilania
,
V.
, and
Gupta
,
K.
,
2014
, “
A Hierarchical and Adaptive Mobile Manipulator Planner
,”
2014 IEEE-RAS International Conference on Humanoid Robots
,
Madrid, Spain
,
Nov. 18–20
,
IEEE
, pp.
45
51
.
244.
Li
,
Q.
,
Mu
,
Y.
,
You
,
Y.
,
Zhang
,
Z.
, and
Feng
,
C.
,
2020
, “
A Hierarchical Motion Planning for Mobile Manipulator
,”
IEEJ Trans. Electrical Electronic Eng.
,
15
(
9
), pp.
1390
1399
.
245.
Kabir
,
A. M.
,
Thakar
,
S.
,
Malhan
,
R. K.
,
Shembekar
,
A. V.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2021
, “
Generation of Synchronized Configuration Space Trajectories With Workspace Path Constraints for an Ensemble of Robots
,”
Int. J. Robot. Res.
,
40
(
2–3
), pp.
651
678
.
246.
Bodily
,
D. M.
,
Allen
,
T. F.
, and
Killpack
,
M. D.
,
2017
, “
Motion Planning for Mobile Robots Using Inverse Kinematics Branching
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
5043
5050
.
247.
Meghdari
,
A.
,
Naderi
,
D.
, and
Alam
,
M. R.
,
2004
, “
Tipover Stability Estimation for Autonomous Mobile Manipulator Using Neural Network
,” Japan–USA Symposium on Flexible Automation, JUSFA 2004, Colorado, July 19, Vol. 21.
248.
Choudhury
,
S.
,
Gammell
,
J. D.
,
Barfoot
,
T. D.
,
Srinivasa
,
S. S.
, and
Scherer
,
S.
,
2016
, “
Regionally Accelerated Batch Informed Trees (rabit*): A Framework to Integrate Local Information Into Optimal Path Planning
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
4207
4214
.
249.
Bowen
,
C.
, and
Alterovitz
,
R.
,
2020
, “Accelerating Motion Planning for Learned Mobile Manipulation Tasks Using Task-Guided Gibbs Sampling,”
Robotics Research
,
N. M.
Amato
,
G.
Hager
,
S.
Thomas
, and
M.
Torres-Torriti
, eds.,
Springer, Cham, Switzerland
, pp.
251
267
.
250.
Burget
,
F.
,
Bennewitz
,
M.
, and
Burgard
,
W.
,
2016
, “
Bi 2 Rrt*: An Efficient Sampling-Based Path Planning Framework for Task-Constrained Mobile Manipulation
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
,
IEEE
, pp.
3714
3721
.
251.
Zhang
,
H.
,
Sheng
,
Q.
,
Sun
,
Y.
,
Sheng
,
X.
,
Xiong
,
Z.
, and
Zhu
,
X.
,
2020
, “
A Novel Coordinated Motion Planner Based on Capability Map for Autonomous Mobile Manipulator
,”
Rob. Auton. Syst.
,
129
, p.
103554
.
252.
Pardi
,
T.
,
Maddali
,
V.
,
Ortenzi
,
V.
,
Stolkin
,
R.
, and
Marturi
,
N.
,
2020
, “
Path Planning for Mobile Manipulator Robots Under Non-Holonomic and Task Constraints
,”
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24
, 2020–Jan. 24, 2021.
253.
Vafadar
,
S.
,
Olabi
,
A.
, and
Panahi
,
M. S.
,
2018
, “
Optimal Motion Planning of Mobile Manipulators With Minimum Number of Platform Movements
,”
2018 IEEE International Conference on Industrial Technology (ICIT)
,
Bhubaneswar, India
,
Dec. 19–21
,
IEEE
, pp.
262
267
.
254.
Zacharias
,
F.
,
Borst
,
C.
, and
Hirzinger
,
G.
,
2007
, “
Capturing Robot Workspace Structure: Representing Robot Capabilities
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 20–Nov. 2
,
IEEE
, pp.
3229
3236
.
255.
Zacharias
,
F.
,
Sepp
,
W.
,
Borst
,
C.
, and
Hirzinger
,
G.
,
2009
, “
Using a Model of the Reachable Workspace to Position Mobile Manipulators for 3-d Trajectories
,”
International Conference on Humanoid Robots
,
Denver, CO
,
Nov. 3–6
,
IEEE/RAS
, pp.
55
61
.
256.
Zacharias
,
F.
,
Borst
,
C.
,
Beetz
,
M.
, and
Hirzinger
,
G.
,
2008
, “
Positioning Mobile Manipulators to Perform Constrained Linear Trajectories
,”
International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
,
IEEE/RSJ
, pp.
2578
2584
.
257.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
, and
Gupta
,
S. K.
,
2019
, “
Identifying Feasible Workpiece Placement With Respect to Redundant Manipulator for Complex Manufacturing Tasks
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
,
IEEE
, pp.
5585
5591
.
258.
Malhan
,
R. K.
,
Kabir
,
A. M.
,
Shah
,
B.
,
Centea
,
T.
, and
Gupta
,
S. K.
,
2019
, “
Determining Feasible Robot Placements in Robotic Cells for Composite Prepreg Sheet Layup
,”
International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
,
American Society of Mechanical Engineers Digital Collection
, p.
V001T02A025
.
259.
Vahrenkamp
,
N.
,
Asfour
,
T.
, and
Dillmann
,
R.
,
2013
, “
Robot Placement Based on Reachability Inversion
,”
International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
1970
1975
.
260.
Makhal
,
A.
, and
Goins
,
A. K.
,
2018
, “
Reuleaux: Robot Base Placement by Reachability Analysis
,”
International Conference on Robotic Computing (IRC)
,
Laguna Hills, CA
,
Jan. 31–Feb. 2
,
IEEE
, pp.
137
142
.
261.
Tang
,
C. P.
, and
Krovi
,
V.
,
2007
, “
Manipulability-Based Configuration Evaluation of Cooperative Payload Transport by Mobile Robot Collectives
,”
Robotica
,
25
(
1
), pp.
29
42
.
262.
Yu
,
Q.
,
Wang
,
G.
,
Hua
,
X.
,
Zhang
,
S.
,
Song
,
L.
,
Zhang
,
J.
, and
Chen
,
K.
,
2018
, “
Base Position Optimization for Mobile Painting Robot Manipulators With Multiple Constraints
,”
Robot. Computer-Integrated Manuf.
,
54
, pp.
56
64
.
263.
Xu
,
J.
,
Harada
,
K.
,
Wan
,
W.
,
Ueshiba
,
T.
, and
Domae
,
Y.
,
2020
, “
Planning an Efficient and Robust Base Sequence for a Mobile Manipulator Performing Multiple Pick-and-Place Tasks
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
11018
11024
.
264.
Dhanaraj
,
N.
,
Yoon
,
Y. J.
,
Malhan
,
R.
,
Bhatt
,
P. M.
,
Thakar
,
S.
, and
Gupta
,
S. K.
,
2022
, “
A Mobile Manipulator System for Accurate and Efficient Spraying on Large Surfaces
,”
Procedia Computer Science Special edition: 3rd International Conference on Industry 4.0 and Smart Manufacturing
,
Linz, Austria
,
November
,
Elsevier
, Vol. 200, pp.
1528
1539
.
265.
Galceran
,
E.
, and
Carreras
,
M.
,
2013
, “
A Survey on Coverage Path Planning for Robotics
,”
Rob. Auton. Syst.
,
61
(
12
), pp.
1258
1276
.
266.
Zhou
,
J.
,
Zhou
,
J.
,
Zheng
,
Y.
, and
Kong
,
B.
,
2016
, “
Research on Path Planning Algorithm of Intelligent Mowing Robot Used in Large Airport Lawn
,”
2016 International Conference on Information System and Artificial Intelligence (ISAI)
,
Hong Kong, China
,
June 24–26
, pp.
375
379
.
267.
Oksanen
,
T.
, and
Visala
,
A.
,
2009
, “
Coverage Path Planning Algorithms for Agricultural Field Machines
,”
J. Field Robot.
,
26
(
8
), pp.
651
668
.
268.
Kaljaca
,
D.
,
Vroegindeweij
,
B.
, and
van Henten
,
E.
,
2020
, “
Coverage Trajectory Planning for a Bush Trimming Robot Arm
,”
J. Field Robot.
,
37
(
2
), pp.
283
308
.
269.
Sidawi
,
K.
,
Moroz
,
P.
, and
Chandra
,
S.
,
2021
, “
On Surface Area Coverage by an Electrostatic Rotating Bell Atomizer
,”
J. Coat. Technol. Res.
,
18
(
3
), pp.
649
663
.
270.
Yao
,
Z.
, and
Gupta
,
S. K.
,
2004
, “
Cutter Path Generation for 2.5 D Milling by Combining Multiple Different Cutter Path Patterns
,”
Int. J. Prod. Res.
,
42
(
11
), pp.
2141
2161
.
271.
Kabir
,
A. M.
,
Kaipa
,
K. N.
,
Marvel
,
J.
, and
Gupta
,
S. K.
,
2017
, “
Automated Planning for Robotic Cleaning Using Multiple Setups and Oscillatory Tool Motions
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
3
), pp.
1364
1377
.
272.
Olivieri
,
P.
,
Birglen
,
L.
,
Maldague
,
X.
, and
Mantegh
,
I.
,
2014
, “
Coverage Path Planning for Eddy Current Inspection on Complex Aeronautical Parts
,”
Robot. Computer-Integrated Manuf.
,
30
(
3
), pp.
305
314
.
273.
Glorieux
,
E.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2020
, “
Coverage Path Planning With Targetted Viewpoint Sampling for Robotic Free-Form Surface Inspection
,”
Robot. Computer-Integrated Manuf.
,
61
, p.
101843
.
274.
Wang
,
Z.
, and
Bo
,
Z.
,
2014
, “
Coverage Path Planning for Mobile Robot Based on Genetic Algorithm
,”
2014 IEEE Workshop on Electronics, Computer and Applications
,
Ottawa, Canada
,
May 8–9
,
IEEE
, pp.
732
735
.
275.
Paus
,
F.
,
Kaiser
,
P.
,
Vahrenkamp
,
N.
, and
Asfour
,
T.
,
2017
, “
A Combined Approach for Robot Placement and Coverage Path Planning for Mobile Manipulation
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE
, pp.
6285
6292
.
276.
Hess
,
J.
,
Tipaldi
,
G. D.
, and
Burgard
,
W.
,
2012
, “
Null Space Optimization for Effective Coverage of 3d Surfaces Using Redundant Manipulators
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura, Portugal
,
Oct. 7–12
,
IEEE
, pp.
1923
1928
.
277.
Yang
,
T.
,
Miro
,
J. V.
,
Wang
,
Y.
, and
Xiong
,
R.
,
2020
, “
Non-Revisiting Coverage Task With Minimal Discontinuities for Non-Redundant Manipulators
,”
Proceedings of Robotics: Science and Systems
,
Virtual
,
July 12–16
.
278.
Leidner
,
D.
,
Bejjani
,
W.
,
Albu-Schäffer
,
A.
, and
Beetz
,
M.
,
2016
, “
Robotic Agents Representing, Reasoning, and Executing Wiping Tasks for Daily Household Chores
,”
International Conference on Autonomous Agents and Multiagent Systems (AAMAS)
,
Singapore
,
May 9–13
, pp.
1006
1014
.
279.
Borst
,
C.
,
Wimbock
,
T.
,
Schmidt
,
F.
,
Fuchs
,
M.
,
Brunner
,
B.
,
Zacharias
,
F.
,
Giordano
,
P. R.
,
Konietschke
,
R.
,
Sepp
,
W.
,
Fuchs
,
S.
, and
Rink
,
C.
,
2009
, “
Rollin’justin-Mobile Platform With Variable Base
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
,
IEEE
, pp.
1597
1598
.
280.
Ramalingam
,
B.
,
Yin
,
J.
,
Elara
,
M. R.
,
Tamilselvam
,
Y. K.
,
Rayguru
,
M. M.
,
Muthugala
,
M. A. J.
, and
Gómez
,
B. F.
,
2020
, “
A Human Support Robot for the Cleaning and Maintenance of Door Handles Using a Deep-Learning Framework
,”
Sensors (Switzerland)
,
20
(
12
), pp.
1
18
.
281.
Thakar
,
S.
,
Malhan
,
R. K.
,
Bhatt
,
P. M.
, and
Gupta
,
S. K.
,
2021
, “
Area-Coverage Planning for Spray-Based Surface Disinfection With a Mobile Manipulator
,”
Rob. Auton. Syst.
,
147
, p.
103920
.
282.
Chen
,
F.
,
Selvaggio
,
M.
, and
Caldwell
,
D. G.
,
2018
, “
Dexterous Grasping by Manipulability Selection for Mobile Manipulator With Visual Guidance
,”
IEEE Trans. Ind. Inform.
,
15
(
2
), pp.
1202
1210
.
283.
Yamazaki
,
K.
,
Tomono
,
M.
, and
Tsubouchi
,
T.
,
2006
, “
Motion Planning for a Mobile Manipulator With Several Grasping Postures
,”
ROBIO
,
Kunming, China
,
Dec. 17–20
, pp.
1077
1082
.
284.
Suzuki
,
S.
,
Endo
,
D.
, and
Yamazaki
,
K.
,
2021
, “
Posture Evaluation for Mobile Manipulators Using Manipulation Ability, Tolerance on Grasping, and Pose Error of End-Effector
,”
Adv. Robot.
,
35
(
10
), pp.
603
618
.
285.
Fujita
,
Y.
,
Uenishi
,
K.
,
Ummadisingu
,
A.
,
Nagarajan
,
P.
,
Masuda
,
S.
, and
Castro
,
M. Y.
,
2020
, “
Distributed Reinforcement Learning of Targeted Grasping With Active Vision for Mobile Manipulators
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
9712
9719
.
286.
Mahler
,
J.
,
Matl
,
M.
,
Liu
,
X.
,
Li
,
A.
,
Gealy
,
D.
, and
Goldberg
,
K.
,
2018
, “
Dex-Net 3.0: Computing Robust Vacuum Suction Grasp Targets in Point Clouds Using a New Analytic Model and Deep Learning
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
,
IEEE
, pp.
1
8
.
287.
Mahler
,
J.
,
Matl
,
M.
,
Satish
,
V.
,
Danielczuk
,
M.
,
DeRose
,
B.
,
McKinley
,
S.
, and
Goldberg
,
K.
,
2019
, “
Learning Ambidextrous Robot Grasping Policies
,”
Sci. Robot.
,
4
(
26
), p.
eaau4984
.
288.
Hegedus
,
M.
,
Gupta
,
K.
, and
Mehrandezh
,
M.
,
2019
, “
Towards an Integrated Autonomous Data-Driven Grasping System With a Mobile Manipulator
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
1601
1607
.
289.
Menon
,
A.
,
Cohen
,
B.
, and
Likhachev
,
M.
,
2014
, “
Motion Planning for Smooth Pickup of Moving Objects
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 4
,
IEEE
, pp.
453
460
.
290.
Chen
,
D.
,
Liu
,
Z.
, and
von Wichert
,
G.
,
2013
, “
Grasping on the Move: A Generic Arm-Base Coordinated Grasping Pipeline for Mobile Manipulation
,”
2013 European Conference on Mobile Robots
,
Barcelona, Spain
,
Sept. 25–27
,
IEEE
, pp.
349
354
.
291.
Souissi
,
O.
,
Benatitallah
,
R.
,
Duvivier
,
D.
,
Artiba
,
A.
,
Belanger
,
N.
, and
Feyzeau
,
P.
,
2013
, “
Path Planning: A 2013 Survey
,”
Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM)
,
Rabbat, Morocco
,
Oct. 28–30
, pp.
1
8
.
292.
Muralidharan
,
V.
, and
Mahindrakar
,
A. D.
,
2014
, “
Position Stabilization and Waypoint Tracking Control of Mobile Inverted Pendulum Robot
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2360
2367
.
293.
Gutiérrez
,
R.
,
López-Guillén
,
E.
,
Bergasa
,
L. M.
,
Barea
,
R.
,
Arango
,
F.
,
Del Egido
,
J.
, and
López-Fernández
,
J.
,
2020
, “
A Waypoint Tracking Controller for Autonomous Road Vehicles Using ROS Framework
,”
Sensors (Switzerland)
,
20
(
14
), p.
4062
.
294.
Mathew
,
R.
, and
Hiremath
,
S. S.
,
2019
, “
Development of Waypoint Tracking Controller for Differential Drive Mobile Robot
,”
2019 6th International Conference on Control, Decision and Information Technologies (CoDIT)
,
Paris, France
,
Apr. 23–26
, pp.
1121
1126
.
295.
Arai
,
H.
,
Tanie
,
K.
, and
Tachi
,
S.
,
1992
, “
Path Tracking Control of a Manipulator Considering Torque Saturation
,”
IEEE Int. Conf. Intell. Robot. Syst.
,
2
(
1
), pp.
1004
1009
.
296.
Jin
,
J.
, and
Gong
,
J.
,
2021
, “
An Interference-Tolerant Fast Convergence Zeroing Neural Network for Dynamic Matrix Inversion and Its Application to Mobile Manipulator Path Tracking
,”
Alexandria Eng. J.
,
60
(
1
), pp.
659
669
.
297.
Karray
,
A.
, and
Feki
,
M.
,
2014
, “
Adaptive Tracking Control of a Mobile Manipulator Actuated by DC Motors
,”
Int. J. Model. Identif. Control.
,
21
(
2
), pp.
193
201
.
298.
Zheng
,
Y.
, and
Anubi
,
O. M.
,
2020
, “
Attack-Resilient Observer Pruning for Path-Tracking Control of Wheeled Mobile Robot
,”
ASME 2020 Dynamic Systems and Control Conference (DSCC)
, Virtual,
Oct. 5–7
, Vol.
84287
, p.
V002T33A001
.
299.
Zhong
,
G.
,
Kobayashi
,
Y.
,
Hoshino
,
Y.
, and
Emaru
,
T.
,
2013
, “
System Modeling and Tracking Control of Mobile Manipulator Subjected to Dynamic Interaction and Uncertainty
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
167
182
.
300.
Iran
,
T. P.
,
Chung
,
T. L.
,
Kim
,
H. K.
,
Kim
,
S. B.
, and
Oh
,
M. S.
,
2004
, “
Trajectory Tracking of Mobile Manipulator for Welding Task Using Sliding Mode Control
,”
30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004
,
Busan, South Korea
,
Nov. 2–6
, Vol.
1
, pp.
407
412
.
301.
Xiao
,
L.
,
Liao
,
B.
,
Li
,
S.
,
Zhang
,
Z.
,
Ding
,
L.
, and
Jin
,
L.
,
2018
, “
Design and Analysis of FTZNN Applied to the Real-Time Solution of a Nonstationary Lyapunov Equation and Tracking Control of a Wheeled Mobile Manipulator
,”
IEEE Trans. Ind. Inform.
,
14
(
1
), pp.
98
105
.
302.
Khan
,
A. H.
,
Li
,
S.
,
Chen
,
D.
, and
Liao
,
L.
,
2020
, “
Tracking Control of Redundant Mobile Manipulator: An RNN Based Metaheuristic Approach
,”
Neurocomputing
,
400
, pp.
272
284
.
303.
Mashali
,
M.
,
Wu
,
L.
,
Alqasemi
,
R.
, and
Dubey
,
R.
,
2018
, “
Controlling a Non-Holonomic Mobile Manipulator in a Constrained Floor Space
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
725
731
.
304.
Dačić
,
D. B.
, and
Kokotović
,
P. V.
,
2006
, “
Path-Following for Linear Systems With Unstable Zero Dynamics
,”
Automatica
,
42
(
10
), pp.
1673
1683
.
305.
Aguiar
,
A. P.
,
Dačić
,
D. B.
,
Hespanha
,
J. P.
, and
Kokotović
,
P.
,
2004
, “
Path-Following or Reference Tracking
?”
IFAC Proc. Vol.
,
37
(
8
), pp.
167
172
.
306.
Abdessemed
,
F.
, and
Monacelli
,
E.
,
2009
,
An Alternate Control Strategy of a Mobile Manipulator With Hardware and Software Description
, Vol.
14
,
Elselvier
,
Amsterdam, Netherlands
.
307.
Liu
,
K.
, and
Lewis
,
F. L.
,
1992
, “
Application of Robust Control Techniques to a Mobile Robot System
,”
J. Robotic Syst.
,
9
(
7
), pp.
893
913
.
308.
Chung
,
J. H.
,
Velinsky
,
S. A.
, and
Hess
,
R. A.
,
1998
, “
Interaction Control of a Redundant Mobile Manipulator
,”
Int. J. Robot. Res.
,
17
(
12
), pp.
1302
1309
.
309.
Tan
,
T. P.
,
Thien
,
P. T.
,
Trong
,
H. B.
, and
Sang
,
B. K.
,
2004
, “Decentralized Control Method for a Welding Mobile Manipulator,”
Advances In Dynamics, Instrumentation And Control
,
World Scientific
,
Singapore
, pp.
109
118
.
310.
Gong
,
K.
, and
McInnes
,
A. I.
,
2013
, “
A Modular Hierarchical Control Scheme for Mobile Manipulation
,”
Recent Advances in Robotics and Automation
,
Wellington, New Zealand
,
Dec. 6–8
, pp.
243
261
.
311.
He
,
Y.
,
Wu
,
M.
, and
Liu
,
S.
,
2018
, “
Decentralised Cooperative Mobile Manipulation With Adaptive Control Parameters
,”
2018 IEEE Conference on Control Technology and Applications (CCTA)
,
Copenhagen, Denmark
,
Aug. 21–24
, pp.
82
87
.
312.
Silva
,
F. F. A.
, and
Adorno
,
B. V.
,
2016
, “
Whole-Body Control of a Mobile Manipulator Using Feedback Linearization Based on Dual Quaternions
,”
2016 XIII Latin American Robotics Symposium and IV Brazilian Robotics Symposium (LARS/SBR)
,
Recife, Brazil
,
Oct. 8–12
, pp.
293
298
.
313.
Papadopoulos
,
E.
, and
Poulakakis
,
J.
,
2000
, “
Planning and Model-Based Control for Mobile Manipulators
,”
Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113)
,
Takamatsu, Japan
,
Oct. 30–Nov. 5
, Vol.
3
, pp.
1810
1815
.
314.
Merkt
,
W.
,
Ivan
,
V.
,
Yang
,
Y.
, and
Vijayakumar
,
S.
,
2019
, “
Towards Shared Autonomy Applications Using Whole-Body Control Formulations of Locomanipulation
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22–26
, pp.
1206
1211
.
315.
Yamamoto
,
Y.
, and
Yun
,
X.
,
1992
, “
Coordinating Locomotion and Manipulation of a Mobile Manipulator
,”
1992 Proceedings of the 31st IEEE Conference on Decision and Control
,
Tucson, AZ
,
Dec. 16–18
, Vol.
3
, pp.
2643
2648
.
316.
Krasinskii
,
A. Y.
,
Il’ina
,
A. N.
, and
Krasinskaya
,
E. M.
,
2019
, “
Stabilization of Steady Motions for Systems With Redundant Coordinates
,”
Moscow Univ. Mech. Bull.
,
74
(
1
), pp.
14
19
.
317.
Mbakop
,
S.
,
Tagne
,
G.
,
Lakhal
,
O.
,
Merzouki
,
R.
, and
Drakunov
,
S. V.
,
2020
, “
Path Planning and Control of Mobile Soft Manipulators With Obstacle Avoidance
,”
2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
, Virtual,
May 15–July 15
, pp.
64
69
.
318.
Lim
,
J.
,
Lee
,
J.
,
Lee
,
C.
,
Kim
,
G.
,
Cha
,
Y.
,
Sim
,
J.
, and
Rhim
,
S.
,
2021
, “
Designing Path of Collision Avoidance for Mobile Manipulator in Worker Safety Monitoring System Using Reinforcement Learning
,”
2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR)
,
Nagoya, Japan
,
Aug. 24–27
, pp.
94
97
.
319.
Kot
,
T.
,
Krys
,
V.
,
Mostýn
,
V.
, and
Novák
,
P.
,
2014
, “
Control System of a Mobile Robot Manipulator
,”
Proceedings of the 2014 15th International Carpathian Control Conference (ICCC)
,
Ljubljana, Slovenia
,
June 10–13
, pp.
258
263
.
320.
Cameron
,
J.
,
MacKenzie
,
D.
,
Ward
,
K.
,
Arkin
,
R.
, and
Book
,
W.
,
1993
, “
Reactive Control for Mobile Manipulation
,”
1993 Proceedings IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, Vol.
3
, pp.
228
235
.
321.
Li
,
M.
,
Yang
,
Z.
,
Zha
,
F.
,
Wang
,
X.
,
Wang
,
P.
,
Li
,
P.
,
Ren
,
Q.
, and
Chen
,
F.
,
2020
, “
Design and Analysis of a Whole-Body Controller for a Velocity Controlled Robot Mobile Manipulator
,”
Sci. China Inf. Sci.
,
63
(
7
), pp.
1
15
.
322.
Huang
,
Q.
,
Sugano
,
S.
, and
Kato
,
I.
,
1994
, “
Stability Control for a Mobile Manipulator Using a Potential Method
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94)
,
Munich, Germany
,
Sept. 12–16
, Vol.
2
, pp.
839
846
.
323.
Liu
,
Y.-H.
,
Meng
,
X.-C.
, and
Zhang
,
M.-L.
,
2008
, “
Research on Mobile Manipulator Tip-Over Stability and Compensation
,”
Proceedings of the 8th WSEAS International Conference on Robotics, Control and Manufacturing Technology, ROCOM’08, World Scientific and Engineering Academy and Society (WSEAS)
,
Hangzhou, China
,
Apr. 6–8
, pp.
114
120
.
324.
Moosavian
,
S. A. A.
, and
Alipour
,
K.
,
2007
, “
On the Dynamic Tip-Over Stability of Wheeled Mobile Manipulators
,”
Int. J. Robot. Autom.
,
22
(
4
), pp.
322
328
.
325.
HUANG
,
Q.
,
SUGANO
,
S.
, and
KATO
,
I.
,
1995
, “
Stability Control for a Vehicle-Mounted Manipulator
,”
Trans. Soc. Instrum. Control Eng.
,
31
(
7
), pp.
861
870
.
326.
Shihabudheen
,
K. V.
,
George
,
N.
, and
Dileep
,
G.
,
2015
, “
Applying H-infinity for Stability Control in Two Wheeled Mobile Manipulator
,”
2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI)
,
Faridabad, India
,
Oct. 8–10
, pp.
46
51
.
327.
Huang
,
Q.
,
Tanie
,
K.
, and
Sugano
,
S.
,
1998
, “
Stability Compensation of a Mobile Manipulator by Manipulatorpaper Motion: Feasibility and Planning
,”
Adv. Robot.
,
13
(
1
), pp.
25
40
.
328.
Papadopoulos
,
E.
, and
Rey
,
D.
,
1996
, “
A New Measure of Tipover Stability Margin for Mobile Manipulators
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
4
, pp.
3111
3116
.
329.
Bertagnoli
,
M.
,
2017
, “
Model-Based Stability Analysis for Mobile Manipulators
,” Master thesis,
Ostbayerische Technische Hochschule Regensburg
,
Regensburg, Germany
, p.
6
.
330.
Diaz-Calderon
,
A.
, and
Kelly
,
A.
,
2005
, “
On-line Stability Margin and Attitude Estimation for Dynamic Articulating Mobile Robots
,”
Int. J. Robot. Res.
,
24
(
10
), pp.
845
866
.
331.
Mailah
,
M.
,
Pitowarno
,
E.
, and
Jamaluddin
,
H.
,
2005
, “
Robust Motion Control for Mobile Manipulator Using Resolved Acceleration and Proportional-Integral Active Force Control
,”
Int. J. Adv. Robotic Syst.
,
2
(
2
), p.
14
.
332.
Ram
,
R. V.
,
Pathak
,
P. M.
, and
Junco
,
S. J.
,
2019
, “
Trajectory Control of a Mobile Manipulator in the Presence of Base Disturbance
,”
Simulation
,
95
(
6
), pp.
529
543
.
333.
Mathew
,
S. S.
, and
Jisha
,
V. R.
,
2020
, “
Tracking Control of a Mobile Manipulator with External Torque Disturbances Using Computed Torque Control
,”
2020 IEEE 17th India Council International Conference (INDICON)
,
New Delhi, India
,
Dec. 11–13
, pp.
1
7
.
334.
Spong
,
M. W.
,
Thorp
,
J. S.
, and
Kleinwaks
,
J. M.
,
1984
, “
The Control of Robot Manipulators With Bounded Input: Part II: Robustness and Disturbance Rejection
,”
The 23rd IEEE Conference on Decision and Control
,
Las Vegas, NV
,
Dec. 12–14
, pp.
1047
1052
.
335.
Liu
,
D.
,
Gao
,
Q.
,
Chen
,
Z.
, and
Liu
,
Z.
,
2020
, “
Linear Active Disturbance Rejection Control of a Two-degrees-of-Freedom Manipulator
,”
Math. Problems Eng.
,
2020
, pp.
1
19
.
336.
Ali
,
M.
, and
Alexander
,
C. K.
,
2017
, “
Trajectory Tracking Control for a Robotic Manipulator Using Nonlinear Active Disturbance Rejection Control
,”
Volume 2: Mechatronics; Estimation and Identification; Uncertain Systems and Robustness; Path Planning and Motion Control; Tracking Control Systems; Multi-Agent and Networked Systems; Manufacturing; Intelligent Transportation and Vehicles; Sensors and Actuators; Diagnostics and Detection; Unmanned, Ground and Surface Robotics; Motion and Vibration Control Applications of Dynamic Systems and Control Conference
, p.
V002T12A002
.
337.
Jing
,
C.
,
Xu
,
H.
, and
Niu
,
X.
,
2019
, “
Adaptive Sliding Mode Disturbance Rejection Control With Prescribed Performance for Robotic Manipulators
,”
ISA Trans.
,
91
, pp.
41
51
.
338.
Benos
,
L.
,
Bechar
,
A.
, and
Bochtis
,
D.
,
2020
, “
Safety and Ergonomics in Human-Robot Interactive Agricultural Operations
,”
Biosyst. Eng.
,
200
, pp.
55
72
.
339.
Mousazadeh
,
H.
,
2013
, “
A Technical Review on Navigation Systems of Agricultural Autonomous Off-Road Vehicles
,”
J. Terramechanics
,
50
(
3
), pp.
211
232
.
340.
Park
,
C.
,
Park
,
D.
,
Jung
,
G.
,
Kim
,
D.
,
Park
,
K.
,
Park
,
C.
, and
Choi
,
T.
,
2014
, “
A Robot Manipulator on the Mobile Platform for an Off-Road Environment
,”
2014 14th International Conference on Control, Automation and Systems (ICCAS 2014)
, pp.
322
325
.
341.
Habibnejad Korayem
,
M.
,
Ghobadi
,
N.
, and
Fathollahi Dehkordi
,
S.
,
2021
, “
Designing an Optimal Control Strategy for a Mobile Manipulator and Its Application by Considering the Effect of Uncertainties and Wheel Slipping
,”
Optimal Control Appl. Methods
,
42
(
5
), pp.
1487
1511
.
342.
Chung
,
J. H.
, and
Velinsky
,
S. A.
,
1998
, “
Modeling and Control of a Mobile Manipulator
,”
Robotica
,
16
(
6
), pp.
607
613
.
343.
Chitta
,
S.
,
Jones
,
E. G.
,
Ciocarlie
,
M.
, and
Hsiao
,
K.
,
2012
, “
Perception, Planning, and Execution for Mobile Manipulation in Unstructured Environments
,”
IEEE Robot. Automation Magazine, Special Issue Mobile Manipulation
,
19
(
2
), pp.
58
71
.
344.
Blomqvist
,
K.
,
Breyer
,
M.
,
Cramariuc
,
A.
,
Förster
,
J.
,
Grinvald
,
M.
,
Tschopp
,
F.
,
Chung
,
J. J.
,
Ott
,
L.
,
Nieto
,
J. I.
, and
Siegwart
,
R.
,
2020
, “
Go Fetch: Mobile Manipulation in Unstructured Environments
,”
CoRR
. https://arxiv.org/abs/2004.00899
345.
Pane
,
Y. P.
,
Nageshrao
,
S. P.
,
Kober
,
J.
, and
Babuška
,
R.
,
2019
, “
Reinforcement Learning Based Compensation Methods for Robot Manipulators
,”
Eng. Appl. Artif. Intell.
,
78
, pp.
236
247
.
346.
Jin
,
L.
,
Li
,
S.
,
Yu
,
J.
, and
He
,
J.
,
2018
, “
Robot Manipulator Control Using Neural Networks: A Survey
,”
Neurocomputing
,
285
, pp.
23
34
.
347.
Polydoros
,
A. S.
, and
Nalpantidis
,
L.
,
2017
, “
Survey of Model-Based Reinforcement Learning: Applications on Robotics
,”
J. Intell. Robot. Syst. Theory Appl.
,
86
(
2
), pp.
153
173
.
348.
Silva Ortigoza
,
R.
,
Marcelino-Aranda
,
M.
,
Silva Ortigoza
,
G.
,
Hernandez Guzman
,
V. M.
,
Molina-Vilchis
,
M. A.
,
Saldana-Gonzalez
,
G.
,
Herrera-Lozada
,
J. C.
, and
Olguin-Carbajal
,
M.
,
2012
, “
Wheeled Mobile Robots: A Review
,”
IEEE Lat. Am. Trans.
,
10
(
6
), pp.
2209
2217
.
349.
Leena
,
N.
, and
Saju
,
K.
,
2016
, “
Modelling and Trajectory Tracking of Wheeled Mobile Robots
,”
Procedia Technol.
,
24
, pp.
538
545
.
350.
Aly
,
A.
, and
Salem
,
F.
,
2013
, “
Vehicle Suspension Systems Control: A Review
,”
Int. J. Control. Autom. Syst.
,
2
(
2
), pp.
46
54
.
351.
Hootsmans
,
N. A.
, and
Dubowsky
,
S.
,
1991
, “
Large Motion Control of Mobile Manipulators Including Vehicle Suspension Characteristics
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
3
, pp.
2336
2341
.
352.
Nozaki
,
K.
, and
Murakami
,
T.
,
2009
, “
A Motion Control of Two-Wheels Driven Mobile Manipulator for Human-Robot Cooperative Transportation
,”
2009 35th Annual Conference of IEEE Industrial Electronics
,
Porto, Portugal
,
Nov. 3–5
, pp.
1574
1579
.
353.
Chan
,
R. P. M.
,
Stol
,
K. A.
, and
Halkyard
,
C. R.
,
2013
, “
Review of Modelling and Control of Two-Wheeled Robots
,”
Annu. Rev. Control
,
37
(
1
), pp.
89
103
.
354.
Dombre
,
E.
, and
Khalil
,
W.
,
2013
,
Robot Manipulators: Modeling, Performance Analysis and Control
,
Wiley
,
Somerset, NJ
.
355.
Sciavicco
,
L.
, and
Siciliano
,
B.
,
2000
,
Modelling and Control of Robot Manipulators
,
Springer
,
Cham, Switzerland
.
356.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Springer Handbook of Robotics
,
Springer
,
Berlin/Heidelberg, Germany
.
357.
Watanabe
,
K.
,
Sato
,
K.
,
Izumi
,
K.
, and
Kunitake
,
Y.
,
2000
, “
Analysis and Control for an Omnidirectional Mobile Manipulator
,”
J. Intell. Robot. Syst. Theory Appl.
,
27
(
1–2
), pp.
3
20
.
358.
Xu
,
D.
,
Zhao
,
D.
, and
Yi
,
J.
,
2007
, “
Dynamic Model and Control for an Omnidirectional Mobile Manipulator
,”
Lect. Notes Control Inf. Sci.
,
362
, pp.
21
30
.
359.
Karavaev
,
Y. L.
,
Shestakov
,
V. A.
, and
Yefremov
,
K. S.
,
2019
, “
Experimental Investigations of the Control Algorithm of a Mobile Manipulation Robot
,”
Russ. J. Nonlinear Dyn.
,
15
(
4
), pp.
487
495
.
360.
Aguilera
,
S.
,
Torres-Torriti
,
M.
, and
Auat
,
F.
,
2014
, “
Modeling of Skid-Steer Mobile Manipulators Using Spatial Vector Algebra and Experimental Validation With a Compact Loader
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
1649
1655
.
361.
Tchoń
,
K.
,
Jakubiak
,
J.
, and
Muszyński
,
R.
,
2001
, “
Kinematics of Mobile Manipulators: A Control Theoretic Perspective
,”
Archives Control Sci.
,
11
(
3/4
), pp.
195
221
.
362.
Bayle
,
B.
,
Fourquet
,
J. Y.
, and
Renaud
,
M.
,
2003
, “
Manipulability of Wheeled Mobile Manipulators: Application to Motion Generation
,”
Int. J. Rob. Res.
,
22
(
7–8
), pp.
565
581
.
363.
Vázquez
,
A.
,
Velasco-Villa
,
M.
, and
Del-Muro-Cuellar
,
B.
,
2008
, “
Path-Tracking Dynamic Model Based Control of an Omnidirectional Mobile Robot
,”
IFAC Proc. Vol.
,
17
(
1
), pp.
5365
5370
.
364.
Padois
,
V.
,
Fourquet
,
J. Y.
, and
Chiron
,
P.
,
2007
, “
Kinematic and Dynamic Model-Based Control of Wheeled Mobile Manipulators: A Unified Framework for Reactive Approaches
,”
Robotica
,
25
(
2
), pp.
157
173
.
365.
Abdullah
,
S.
,
Mailah
,
M.
, and
Hing
,
C. T. H.
,
2013
, “
Feedforward Model Based Active Force Control of Mobile Manipulator Using MATLAB and MD Adams
,”
WSEAS Trans. Syst.
,
12
(
6
), pp.
314
324
.
366.
Papadopoulos
,
E.
, and
Poulakakis
,
J.
,
2000
, “
Planning and Model-Based Control for Mobile Manipulators
,”
IEEE Int. Conf. Intell. Robot. Syst.
,
3
, pp.
1810
1815
.
367.
Avanzini
,
G. B.
,
Zanchettin
,
A. M.
, and
Rocco
,
P.
,
2015
, “
Constraint-Based Model Predictive Control for Holonomic Mobile Manipulators
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
1473
1479
.
368.
Minniti
,
M. V.
,
Farshidian
,
F.
,
Grandia
,
R.
, and
Hutter
,
M.
,
2019
, “
Whole-Body MPC for a Dynamically Stable Mobile Manipulator
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3687
3694
.
369.
Wang
,
Y.
,
Kusano
,
H.
, and
Sugihara
,
T.
,
2021
, “
Transporting a Heavy Object on a Frictional Floor by a Mobile Manipulator Based on Adaptive MPC Framework
,”
2021 IEEE/SICE International Symposium on System Integration (SII)
,
Narvik, Norway
,
Jan. 8–12
, pp.
807
812
.
370.
Colombo
,
R.
,
Gennari
,
F.
,
Annem
,
V.
,
Rajendran
,
P.
,
Thakar
,
S.
,
Bascetta
,
L.
, and
Gupta
,
S. K.
,
2019
, “
Parameterized Model Predictive Control of a Nonholonomic Mobile Manipulator: A Terminal Constraint-Free Approach
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22–26
,
IEEE
, pp.
1437
1442
.
371.
Tan
,
J.
, and
Xi
,
N.
,
2002
, “
Integrated Task Planning and Control for Mobile Manipulators
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292)
,
Washington, DC
,
May 11–15
, Vol.
1
, pp.
382
387
.
372.
Khatib
,
O.
,
1999
, “
Mobile Manipulation: The Robotic Assistant
,”
Rob. Auton. Syst.
,
26
(
2
), pp.
175
183
. Field and Service Robotics.
373.
Hollerbach
,
J.
,
Khalil
,
W.
, and
Gautier
,
M.
,
2016
, “Model Identification,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
113
137
.
374.
Peters
,
J.
,
Lee
,
D. D.
,
Kober
,
J.
,
Nguyen-tuong
,
D.
,
Bagnell
,
J. A.
, and
Schaal
,
S.
,
2016
, “Robot Learning,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
357
394
.
375.
Cao
,
Z.
, and
Niu
,
Y.
,
2018
, “
Finite-Time Sliding Mode Control of Markovian Jump Systems Subject to Actuator Nonlinearities and Its Application to Wheeled Mobile Manipulator
,”
J. Franklin Inst.
,
355
(
16
), pp.
7865
7894
.
376.
Seo
,
I. S.
, and
Han
,
S. I.
,
2018
, “
Dual Closed-Loop Sliding Mode Control for a Decoupled Three-Link Wheeled Mobile Manipulator
,”
ISA Trans.
,
80
, pp.
322
335
.
377.
Peng
,
J.
,
Yang
,
Z.
,
Wang
,
Y.
,
Zhang
,
F.
, and
Liu
,
Y.
,
2019
, “
Robust Adaptive Motion/Force Control Scheme for Crawler-Type Mobile Manipulator With Nonholonomic Constraint Based on Sliding Mode Control Approach
,”
ISA Trans.
,
92
, pp.
166
179
.
378.
Brahmi
,
A.
,
Saad
,
M.
,
Gauthier
,
G.
,
Zhu
,
W. H.
, and
Ghommam
,
J.
,
2017
, “
Tracking Control of Mobile Manipulator Robot Based on Adaptive Backstepping Approach
,”
Int. J. Digital Signals Smart Syst.
,
1
(
3
), p.
224
.
379.
Chen
,
N.
,
Song
,
F.
,
Li
,
G.
,
Sun
,
X.
, and
Ai
,
C.
,
2013
, “
An Adaptive Sliding Mode Backstepping Control for the Mobile Manipulator With Nonholonomic Constraints
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
10
), pp.
2885
2899
.
380.
Bu
,
C. W.
, and
Xu
,
K. F.
,
2009
, “
Robust Control of Mobile Manipulator Service Robot Using Torque Compensation
,”
2009 International Conference on Information Technology and Computer Science
,
Kiev, Ukraine
,
July 25–26
, Vol.
2
, pp.
69
72
.
381.
Andaluz
,
V.
,
Roberti
,
F.
, and
Carelli
,
R.
,
2010
, “
Robust Control With Redundancy Resolution and Dynamic Compensation for Mobile Manipulators
,”
Proc. IEEE Int. Conf. Ind. Technol.
,
1109
(
5400
), pp.
1469
1474
.
382.
Mazur
,
A.
,
2004
, “
Hybrid Adaptive Control Laws Solving a Path Following Problem for Non-Holonomic Mobile Manipulators
,”
Int. J. Control
,
77
(
15
), pp.
1297
1306
.
383.
Nguyen
,
T. P.
,
Vo
,
H. D.
,
Joon
,
H. J.
,
Hak
,
K. K.
, and
Sang
,
B. K.
,
2007
, “
Adaptive Control for Welding Mobile Manipulator With Unknown Dimensional Parameters
,”
Proceedings 2007 4th IEEE International Conference on Mechatronics, ICM 2007
,
Cairo, Egypt
,
Dec. 29–31
, pp.
8
10
.
384.
Andaluz
,
V.
,
Roberti
,
F.
, and
Carelli
,
R.
,
2010
, “
Adaptive Control With Redundancy Resolution of Mobile Manipulators
,”
IECON 36th Annual Conference on IEEE Industrial Electronics Society
,
Glendale, CA
,
Nov. 7–10
, Vol.
1109
, pp.
1436
1441
.
385.
Van Pham
,
C.
, and
Wang
,
Y. N.
,
2015
, “
Robust Adaptive Trajectory Tracking Sliding Mode Control Based on Neural Networks for Cleaning and Detecting Robot Manipulators
,”
J. Intell. Robot. Syst. Theory Appl.
,
79
(
1
), pp.
101
114
.
386.
Ding
,
L.
,
Xia
,
K.
,
Gao
,
H.
,
Liu
,
G.
, and
Deng
,
Z.
,
2018
, “
Robust Adaptive Control of Door Opening by a Mobile Rescue Manipulator Based on Unknown-Force-Related Constraints Estimation
,”
Robotica
,
36
(
1
), pp.
119
140
.
387.
Li
,
Z.
,
Ge
,
S. S.
,
Adams
,
M.
, and
Wijesoma
,
W. S.
,
2008
, “
Robust Adaptive Control of Uncertain Force/Motion Constrained Nonholonomic Mobile Manipulators
,”
Automatica
,
44
(
3
), pp.
776
784
.
388.
Boukattaya
,
M.
,
Damak
,
T.
, and
Jallouli
,
M.
,
2011
, “
Robust Adaptive Control for Mobile Manipulators
,”
Int. J. Autom. Comput.
,
8
(
1
), pp.
8
13
.
389.
Ge
,
S. S.
,
Wang
,
J.
,
Lee
,
T. H.
, and
Zhou
,
G. Y.
,
2001
, “
Adaptive Robust Stabilization of Dynamic Nonholonomic Chained Systems
,”
J. Robot. Syst.
,
18
(
3
), pp.
119
133
.
390.
Wang
,
Z.
,
Ge
,
S.
, and
Lee
,
T.
,
2004
, “
Robust Motion/Force Control of Uncertain Holonomic/Nonholonomic Mechanical Systems
,”
IEEE/ASME Trans. Mechatron.
,
9
(
1
), pp.
118
123
.
391.
Nassal
,
U.
, and
Junge
,
R.
,
1996
, “
Fuzzy Control for Mobile Manipulation
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol.
3
, pp.
2264
2269
.
392.
Erden
,
M. S.
,
Leblebicioğlu
,
K.
, and
Halici
,
U.
,
2002
, “
Multi-Agent System Based Fuzzy Controller Design With Genetic Tuning for a Service Mobile Manipulator Robot in the Hand-Over Task
,”
IFAC Proc. Vol.
,
35
(
1
), pp.
503
508
. 15th IFAC World Congress.
393.
Azar
,
A. T.
,
Ammar
,
H. H.
, and
Mliki
,
H.
,
2018
, “
Fuzzy Logic Controller With Color Vision System Tracking for Mobile Manipulator Robot
,”
The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018)
,
Cairo, Egypt
,
Feb. 22–24
,
Springer International Publishing
, pp.
138
146
.
394.
Peters
,
J.
,
Lee
,
D. D.
,
Kober
,
J.
,
Nguyen-Tuong
,
D.
,
Bagnell
,
J. A.
, and
Schaal
,
S.
,
2016
,
Robot Learning
,
Springer International Publishing
,
Cham
, pp.
357
398
.
395.
Wang
,
C.
,
Zhang
,
Q.
,
Tian
,
Q.
,
Li
,
S.
,
Wang
,
X.
,
Lane
,
D.
,
Petillot
,
Y.
, and
Wang
,
S.
,
2020
, “
Learning Mobile Manipulation Through Deep Reinforcement Learning
,”
Sensors (Switzerland)
,
20
(
3
), pp.
1
18
.
396.
Kindle
,
J.
,
Furrer
,
F.
,
Novkovic
,
T.
,
Chung
,
J. J.
,
Siegwart
,
R.
, and
Nieto
,
J.
,
2020
, “
Whole-Body Control of a Mobile Manipulator using End-to-End Reinforcement Learning
.”
arXiv preprint
. https://arxiv.org/abs/2003.02637
397.
Li
,
Z.
,
Zhao
,
T.
,
Chen
,
F.
,
Hu
,
Y.
,
Su
,
C. Y.
, and
Fukuda
,
T.
,
2018
, “
Reinforcement Learning of Manipulation and Grasping Using Dynamical Movement Primitives for a Humanoidlike Mobile Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
23
(
1
), pp.
121
131
.
398.
Honerkamp
,
D.
,
Welschehold
,
T.
, and
Valada
,
A.
,
2021
, “
Kinematic Feasibility for Mobile Manipulation Through Deep Reinforcement Learning
.”
399.
Lin
,
S.
, and
Goldenberg
,
A. A.
,
2001
, “
Neural-Network Control of Mobile Manipulators
,”
IEEE Trans. Neural Netw.
,
12
(
5
), pp.
1121
1133
.
400.
Lee
,
C. Y.
,
Jeong
,
I. K.
,
Lee
,
I. H.
, and
Lee
,
J. J.
,
2004
, “
Motion Control of Mobile Manipulator Based on Neural Networks and Error Compensation
,”
Proc. IEEE Int. Conf. Robot. Autom.
,
2004
(
5
), pp.
4627
4632
.
401.
Yi
,
G.
,
Mao
,
J.
,
Wang
,
Y.
,
Guo
,
S.
, and
Miao
,
Z.
,
2018
, “
Adaptive Tracking Control of Nonholonomic Mobile Manipulators Using Recurrent Neural Networks
,”
Int. J. Control. Autom. Syst.
,
16
(
3
), pp.
1390
1403
.
402.
Ren
,
C.
,
Zhang
,
J.
,
Li
,
W.
, and
Ma
,
S.
,
2020
, “
Data-Driven Model Free Adaptive Control for an Omnidirectional Mobile Manipulator Using Neural Network
,”
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–10
, pp.
1002
1007
.
403.
Teka
,
B.
,
Raja
,
R.
, and
Dutta
,
A.
,
2019
, “
Learning Based End Effector Tracking Control of a Mobile Manipulator for Performing Tasks on an Uneven Terrain
,”
Int. J. Intell. Robot. Appl.
,
3
(
2
), pp.
102
114
.
404.
Meng
,
J.
,
Wang
,
S.
,
Li
,
G.
,
Jiang
,
L.
,
Zhang
,
X.
,
Liu
,
C.
, and
Xie
,
Y.
,
2021
, “
Iterative-Learning Error Compensation for Autonomous Parking of Mobile Manipulator in Harsh Industrial Environment
,”
Robot. Comput. Integr. Manuf.
,
68
, p.
102077
.
405.
Mai
,
T.
,
2021
, “
Hybrid Adaptive Tracking Control Method for Mobile Manipulator Robot Based on Proportional–Integral–Derivative Technique
,”
Proc. Inst. Mechan. Eng. Part C: J. Mech. Eng. Sci.
,
235
, pp.
6463
6480
.
406.
Cheng
,
M.-B.
, and
Tsai
,
C.-C.
,
2005
, “
Hybrid Robust Tracking Control for a Mobile Manipulator Via Sliding-Mode Neural Network
,”
2005 IEEE International Conference on Mechatronics ICM ’05
,
Ontario, Canada
,
July 20–Aug. 1
, pp.
537
542
.
407.
Cheng
,
M. B.
, and
Tsai
,
C. C.
,
2005
, “
Hybrid Sliding-Mode Fuzzy Neural Network Tracking Control for a Wheeled Mobile Manipulator
,”
Proc. IEEE Int. Conf. Ind. Technol.
,
2005
, pp.
944
949
.
408.
WEI
,
W.
,
2003
, “
Neuro-Fuzzy and Model-Based Motion Control for Mobile Manipulator Among Dynamic Obstacles
,”
Sci. China Ser. F
,
46
(
1
), p.
14
.
409.
Mbede
,
J.
,
Ma
,
S.
,
Toure
,
Y.
,
Graefe
,
V.
, and
Zhang
,
L.
,
2004
, “
Robust Neuro-Fuzzy Navigation of Mobile Manipulator Among Dynamic Obstacles
,”
2004 IEEE International Conference on Robotics and Automation, Proceedings. ICRA ’04. 2004
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
5
, pp.
5051
5057
.
410.
Kumar
,
N.
,
Panwar
,
V.
,
Sukavanam
,
N.
,
Sharma
,
S. P.
, and
Borm
,
J. H.
,
2011
, “
Neural Network Based Hybrid Force/Position Control for Robot Manipulators
,”
Int. J. Precis. Eng. Manuf.
,
12
(
3
), pp.
419
426
.
411.
Xia
,
K.
,
Gao
,
H.
,
Ding
,
L.
,
Liu
,
G.
,
Deng
,
Z.
,
Liu
,
Z.
, and
Ma
,
C.
,
2018
, “
Trajectory Tracking Control of Wheeled Mobile Manipulator Based on Fuzzy Neural Network and Extended Kalman Filtering
,”
Neural Comput. Appl.
,
30
(
2
), pp.
447
462
.
412.
Navarro
,
B.
,
Cherubini
,
A.
,
Fonte
,
A.
,
Poisson
,
G.
, and
Fraisse
,
P.
,
2017
, “
A Framework for Intuitive Collaboration With a Mobile Manipulator
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, Canada
,
Sept. 24–28
,
IEEE
, pp.
6293
6298
.
413.
Annem
,
V.
,
Rajendran
,
P.
,
Thakar
,
S.
, and
Gupta
,
S. K.
,
2019
, “
Towards Remote Teleoperation of a Semi-Autonomous Mobile Manipulator System in Machine Tending Tasks
,”
Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing of International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10–14
, p.
V001T02A027
.
414.
Nair
,
A.
,
Bechar
,
A.
,
Tao
,
Y.
, and
Nof
,
S.
,
2019
, “
The Hub-ci Model for Telerobotics in Greenhouse Monitoring
,”
Procedia Manuf.
,
39
, pp.
414
421
, 25th International Conference on Production Research Manufacturing Innovation: Cyber Physical Manufacturing, Aug. 9–14, 2019, Chicago, IL).
415.
Cheein
,
F. A.
,
Herrera
,
D.
,
Gimenez
,
J.
,
Carelli
,
R.
,
Torres-Torriti
,
M.
,
Rosell-Polo
,
J. R.
,
Escolà
,
A.
, and
Arnó
,
J.
,
2015
, “
Human-Robot Interaction in Precision Agriculture: Sharing the Workspace With Service Units
,”
2015 IEEE International Conference on Industrial Technology (ICIT)
,
Seville, Spain
,
Mar. 17–19
, pp.
289
295
.
416.
Sisbot
,
E. A.
,
Clodic
,
A.
,
Alami
,
R.
, and
Ransan
,
M.
,
2008
, “
Supervision and Motion Planning for a Mobile Manipulator Interacting With Humans
,”
Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction
,
San Diego, CA
,
Mar. 11–13
, pp.
327
334
.
417.
Agah
,
A.
, and
Tanie
,
K.
,
1997
, “
Human Interaction With a Service Robot: Mobile-Manipulator Handing Over an Object to a Human
,”
Proceedings of International Conference on Robotics and Automation
,
Albuquerque, NM
,
Apr. 20–25
, Vol.
1
,
IEEE
, pp.
575
580
.
418.
Yamamoto
,
Y.
,
Eda
,
H.
, and
Yun
,
X.
,
1996
, “
Coordinated Task Execution of a Human and a Mobile Manipulator
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneopolis, MN
,
Apr. 22–28
, Vol.
2
,
IEEE
, pp.
1006
1011
.
419.
Al-Hussaini
,
S.
,
Thakar
,
S.
,
Kim
,
H.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Marvel
,
J. A.
, and
Gupta
,
S. K.
,
2020
, “
Human-Supervised Semi-Autonomous Mobile Manipulators for Safely and Efficiently Executing Machine Tending Tasks
,”
Artificial Intelligence for Human-Robot Interaction Symposium, AAAI Fall Symposium Series
,
Washington, DC
,
Nov. 11–14
.
420.
Chen
,
M.
,
Liu
,
C.
, and
Du
,
G.
,
2018
, “
A Human–Robot Interface for Mobile Manipulator
,”
Intell. Service Robot.
,
11
(
3
), pp.
269
278
.
421.
Andaluz
,
V. H.
,
Quevedo
,
W. X.
,
Chicaiza
,
F. A.
,
Varela
,
J.
,
Gallardo
,
C.
,
Sánchez
,
J. S.
, and
Arteaga
,
O.
,
2016
, “
Transparency of a Bilateral Tele-Operation Scheme of a Mobile Manipulator Robot
,”
International Conference on Augmented Reality, Virtual Reality and Computer Graphics
,
Lecce, Italy
,
June 15–18
,
Springer
, pp.
228
245
.
422.
Le
,
D. T.
,
Sutjipto
,
S.
,
Lai
,
Y.
, and
Paul
,
G.
,
2020
, “
Intuitive Virtual Reality Based Control of a Real-World Mobile Manipulator
,”
2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV)
,
Paris, France
,
May 31–Aug. 31
,
IEEE
, pp.
767
772
.
423.
Sanford
,
J.
,
Ranatunga
,
I.
, and
Popa
,
D.
,
2013
, “
Physical Human-Robot Interaction With a Mobile Manipulator Through Pressure Sensitive Robot Skin
,”
Proceedings of the 6th International Conference on Pervasive Technologies Related to Assistive Environments
,
Fulbrigh, Greece
,
May 21–31
, pp.
1
6
.
424.
Dean-Leon
,
E.
,
Pierce
,
B.
,
Bergner
,
F.
,
Mittendorfer
,
P.
,
Ramirez-Amaro
,
K.
,
Burger
,
W.
, and
Cheng
,
G.
,
2017
, “
Tomm: Tactile Omnidirectional Mobile Manipulator
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
,
IEEE
, pp.
2441
2447
.
425.
Le
,
A. V.
,
Ramalingam
,
B.
,
Gómez
,
B. F.
,
Mohan
,
R. E.
,
Minh
,
T. H. Q.
, and
Sivanantham
,
V.
,
2021
, “
Social Density Monitoring Toward Selective Cleaning by Human Support Robot With 3d Based Perception System
,”
IEEE Access
,
9
, pp.
41407
41416
.
426.
Huang
,
J.
, and
Cakmak
,
M.
,
2017
, “
Code3: A System for End-to-End Programming of Mobile Manipulator Robots for Novices and Experts
,”
2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
,
Hokkaido, Japan
,
May 7–10
,
IEEE
, pp.
453
462
.
427.
Schou
,
C.
,
Damgaard
,
J. S.
,
Bøgh
,
S.
, and
Madsen
,
O.
,
2013
, “
Human-Robot Interface for Instructing Industrial Tasks Using Kinesthetic Teaching
,”
IEEE ISR 2013
,
Seoul, South Korea
,
Oct. 24–26
,
IEEE
, pp.
1
6
.