Abstract
This paper presents the mechanical design of a six-degree-of-freedom low-impedance displacement sensor. The sensor is mounted around a link of a serial robot and used as an interface for physical human–robot interaction. The motivation for the use of a low-impedance sensor is first discussed. The mechanical design of each of the elastic components of the sensor is then presented. The kinematic architecture of the mechanism is introduced, and the inverse and forward kinematic problems are solved. The kinematic sensitivity is then used to characterize the accuracy of the mechanism. Finally, the design of a prototype is presented and experimental results are provided.
Issue Section:
Research Papers
References
1.
Tadele
, T. S.
, de Vries
, T.
, and Stramigioli
, S.
, 2014
, “The Safety of Domestic Robotics: A Survey of Various Safety-Related Publications
,” IEEE Robot. Autom. Mag.
, 21
(3
), pp. 134
–142
. 10.1109/MRA.2014.23101512.
Krüger
, J.
, Lien
, T. K.
, and Verl
, A.
, 2009
, “Cooperation of Human and Machines in Assembly Lines
,” CIRP Ann. Manuf. Technol.
, 58
(2
), pp. 628
–646
. 10.1016/j.cirp.2009.09.0093.
Cherubini
, A.
, Passama
, R.
, Crosnier
, A.
, Lasnier
, A.
, and Fraisse
, P.
, 2016
, “Collaborative Manufacturing With Physical Human–Robot Interaction
,” Robot. Comput. Int. Manuf.
, 40
(1
), pp. 1
–13
. 10.1016/j.rcim.2015.12.0074.
Haddadin
, S.
, Albu-Schäffer
, A.
, and Hirzinger
, G.
, 2009
, “Requirements for Safe Robots: Measurements, Analysis and New Insights
,” Int. J. Robot. Res.
, 28
(11–12
), pp. 1507
–1527
. 10.1177/02783649093439705.
Pratt
, G. A.
, Williamson
, M. M.
, Dillworth
, P.
, Pratt
, J.
, and Wright
, A.
, 1997
, “Stiffness Isn’t Everything,” Experimental Robotics IV
, O.
Khatib
and J. K.
Salisbury
, eds., Springer
, New York
, pp. 253
–262
.6.
Loughlin
, C.
, Albu-Schäffer
, A.
, Haddadin
, S.
, Ott
, C.
, Stemmer
, A.
, Wimböck
, T.
, and Hirzinger
, G.
, 2007
, “The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments
,” Ind. Robot Int. J
, 34
(5
). 10.1108/014399107107743867.
Raiola
, G.
, Cardenas
, C. A.
, Tadele
, T. S.
, de Vries
, T.
, and Stramigioli
, S.
, 2018
, “Development of a Safety- and Energy-Aware Impedance Controller for Collaborative Robots
,” IEEE Robot. Autom. Lett.
, 3
(2
), pp. 1237
–1244
. 10.1109/LRA.2018.27956398.
Lecours
, A.
, St-Onge
, B. M.
, and Gosselin
, C.
, 2012
, “Variable Admittance Control of a Four-Degree-of-Freedom Intelligent Assist Device.
,” Proceedings of the IEEE International Conference on Robotics and Automation
, St. Paul, MN, May 14–18, pp. 3903
–3908
.9.
Eppinger
, S. D.
, and Seering
, W. P.
, 1992
, “Three Dynamic Problems in Robot Force Control
,” IEEE Trans. Rob. Autom.
, 8
(6
), pp. 751
–758
. 10.1109/70.18267510.
Fauteux
, P.
, Lauria
, M.
, Heintz
, B.
, and Michaud
, F.
, 2010
, “Dual-Differential Rheological Actuator for High-Performance Physical Robotic Interaction
,” IEEE Trans. Robot.
, 26
(4
), pp. 607
–618
. 10.1109/TRO.2010.205288011.
Gealy
, D. V.
, McKinley
, S.
, Yi
, B.
, Wu
, P.
, Downey
, P. R.
, Balke
, G.
, Zhao
, A.
, Guo
, M.
, Thomasson
, R.
, Sinclair
, A.
, Cuellar
, P.
, McCarthy
, Z.
, and Abbeel
, P.
, 2019
, “Quasi-Direct Drive for Low-Cost Compliant Robotic Manipulation
,” Proceedings of the IEEE International Conference on Robotics and Automation
, Montreal, Quebec, Canada, May 20–24, pp. 437
–443
.12.
Arifin
, A. S.
, Ang
, M. H.
, Lai
, C. Y.
, and Lim
, C. W.
, 2013
, “General Framework of the Force and Compliant Motion Control for Macro Mini Manipulator
,” 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Wollongong, Australia, July 9–12, IEEE
, pp. 949
–954
.13.
Mohammad
, A. E. K.
, Hong
, J.
, and Wang
, D.
, 2018
, “Design of a Force-Controlled End-Effector With Low-Inertia Effect for Robotic Polishing Using Macro-Mini Robot Approach
,” Robot. Comput. Int. Manuf.
, 49
(1
), pp. 54
–65
. 10.1016/j.rcim.2017.05.01114.
Labrecque
, P. D.
, Laliberté
, T.
, Foucault
, S.
, Abdallah
, M. E.
, and Gosselin
, C.
, 2017
, “uMan: A Low-Impedance Manipulator for Human–Robot Cooperation Based on Underactuated Redundancy
,” IEEE/ASME Trans. Mechatron.
, 22
(3
), pp. 1401
–1411
. 10.1109/TMECH.2017.265232215.
Badeau
, N.
, Gosselin
, C.
, Foucault
, S.
, Laliberté
, T.
, and Abdallah
, M. E.
, 2018
, “Intuitive Physical Human–Robot Interaction
,” IEEE Robot. Autom. Mag.
, 25
(2
), pp. 28
–38
. 10.1109/mra.2018.280052016.
Boucher
, G.
, Laliberté
, T.
, and Gosselin
, C.
, 2019
, “A Parallel Low-Impedance Sensing Approach for Highly Responsive Physical Human–Robot Interaction
,” 2019 International Conference on Robotics and Automation (ICRA)
, Montreal, Quebec, Canada, May 20–24, IEEE
, pp. 3754
–3760
.17.
Stewart
, D.
, 1965
, “A Platform With Six Degrees of Freedom
,” Proc. Inst. Mech. Eng.
, 180
(1
), pp. 371
–386
. 10.1243/PIME_PROC_1965_180_029_0218.
De Santis
, A.
, Siciliano
, B.
, De Luca
, A.
, and Bicchi
, A.
, 2008
, “An Atlas of Physical Human–Robot Interaction
,” Mech. Mach. Theory
, 43
(3
), pp. 253
–270
. 10.1016/j.mechmachtheory.2007.03.00319.
Kosuge
, K.
, Okuda
, M.
, Fukuda
, T.
, Koduka
, T.
, and Mizuno
, T.
, 1993
, “Input/Output Force Analysis of Stewart Platform Type of Manipulators
,” Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 93, IROS’93
, Yokohama, Japan, July 26–30, Vol. 3
, IEEE
, pp. 1666
–1673
.20.
Husty
, M. L.
, 1996
, “An Algorithm for Solving the Direct Kinematic of Stewart–Gough-Tuype Platforms
,” Mech. Mach. Theory
, 31
(4
), pp. 365
–380
. 10.1016/0094-114X(95)00091-C21.
Dietmaier
, P.
, 1998
, “The Stewart–Gough Platform of General Geometry Can Have 40 Real Postures,” Advances in Robot Kinematics: Analysis and Control
, J.
Lenarcic
and M.L.
Husty
, eds., Springer
, New York
, pp. 7
–16
.22.
Innocenti
, C.
, 2001
, “Forward Kinematics in Polynomial Form of the General Stewart Platform
,” ASME J. Mech. Des.
, 123
(2
), pp. 254
–260
. 10.1115/1.134801823.
Dasgupta
, B.
, and Mruthyunjaya
, T.
, 2000
, “The Stewart Platform Manipulator: A Review
,” Mech. Mach. Theory
, 35
(1
), pp. 15
–40
. 10.1016/S0094-114X(99)00006-324.
Angeles
, J.
, 2002
, Fundamentals of Robotic Mechanical Systems
, Springer
, New York
.25.
Cardou
, P.
, Bouchard
, S.
, and Gosselin
, C.
, 2010
, “Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,” IEEE Trans. Robot.
, 26
(1
), pp. 166
–173
. 10.1109/TRO.2009.203725226.
Labrecque
, P. D.
, Haché
, J. -M.
, Abdallah
, M.
, and Gosselin
, C.
, 2016
, “Low-Impedance Physical Human–Robot Interaction Using ann Active–Passive Dynamics Decoupling
,” IEEE Robot. Autom. Lett.
, 1
(2
), pp. 938
–945
. 10.1109/LRA.2016.2531124Copyright © 2021 by ASME
You do not currently have access to this content.