Abstract

This paper presents the mechanical design of a six-degree-of-freedom low-impedance displacement sensor. The sensor is mounted around a link of a serial robot and used as an interface for physical human–robot interaction. The motivation for the use of a low-impedance sensor is first discussed. The mechanical design of each of the elastic components of the sensor is then presented. The kinematic architecture of the mechanism is introduced, and the inverse and forward kinematic problems are solved. The kinematic sensitivity is then used to characterize the accuracy of the mechanism. Finally, the design of a prototype is presented and experimental results are provided.

References

1.
Tadele
,
T. S.
,
de Vries
,
T.
, and
Stramigioli
,
S.
,
2014
, “
The Safety of Domestic Robotics: A Survey of Various Safety-Related Publications
,”
IEEE Robot. Autom. Mag.
,
21
(
3
), pp.
134
142
. 10.1109/MRA.2014.2310151
2.
Krüger
,
J.
,
Lien
,
T. K.
, and
Verl
,
A.
,
2009
, “
Cooperation of Human and Machines in Assembly Lines
,”
CIRP Ann. Manuf. Technol.
,
58
(
2
), pp.
628
646
. 10.1016/j.cirp.2009.09.009
3.
Cherubini
,
A.
,
Passama
,
R.
,
Crosnier
,
A.
,
Lasnier
,
A.
, and
Fraisse
,
P.
,
2016
, “
Collaborative Manufacturing With Physical Human–Robot Interaction
,”
Robot. Comput. Int. Manuf.
,
40
(
1
), pp.
1
13
. 10.1016/j.rcim.2015.12.007
4.
Haddadin
,
S.
,
Albu-Schäffer
,
A.
, and
Hirzinger
,
G.
,
2009
, “
Requirements for Safe Robots: Measurements, Analysis and New Insights
,”
Int. J. Robot. Res.
,
28
(
11–12
), pp.
1507
1527
. 10.1177/0278364909343970
5.
Pratt
,
G. A.
,
Williamson
,
M. M.
,
Dillworth
,
P.
,
Pratt
,
J.
, and
Wright
,
A.
,
1997
, “Stiffness Isn’t Everything,”
Experimental Robotics IV
,
O.
Khatib
and
J. K.
Salisbury
, eds.,
Springer
,
New York
, pp.
253
262
.
6.
Loughlin
,
C.
,
Albu-Schäffer
,
A.
,
Haddadin
,
S.
,
Ott
,
C.
,
Stemmer
,
A.
,
Wimböck
,
T.
, and
Hirzinger
,
G.
,
2007
, “
The DLR Lightweight Robot: Design and Control Concepts for Robots in Human Environments
,”
Ind. Robot Int. J
,
34
(
5
). 10.1108/01439910710774386
7.
Raiola
,
G.
,
Cardenas
,
C. A.
,
Tadele
,
T. S.
,
de Vries
,
T.
, and
Stramigioli
,
S.
,
2018
, “
Development of a Safety- and Energy-Aware Impedance Controller for Collaborative Robots
,”
IEEE Robot. Autom. Lett.
,
3
(
2
), pp.
1237
1244
. 10.1109/LRA.2018.2795639
8.
Lecours
,
A.
,
St-Onge
,
B. M.
, and
Gosselin
,
C.
,
2012
, “
Variable Admittance Control of a Four-Degree-of-Freedom Intelligent Assist Device.
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, St. Paul, MN, May 14–18, pp.
3903
3908
.
9.
Eppinger
,
S. D.
, and
Seering
,
W. P.
,
1992
, “
Three Dynamic Problems in Robot Force Control
,”
IEEE Trans. Rob. Autom.
,
8
(
6
), pp.
751
758
. 10.1109/70.182675
10.
Fauteux
,
P.
,
Lauria
,
M.
,
Heintz
,
B.
, and
Michaud
,
F.
,
2010
, “
Dual-Differential Rheological Actuator for High-Performance Physical Robotic Interaction
,”
IEEE Trans. Robot.
,
26
(
4
), pp.
607
618
. 10.1109/TRO.2010.2052880
11.
Gealy
,
D. V.
,
McKinley
,
S.
,
Yi
,
B.
,
Wu
,
P.
,
Downey
,
P. R.
,
Balke
,
G.
,
Zhao
,
A.
,
Guo
,
M.
,
Thomasson
,
R.
,
Sinclair
,
A.
,
Cuellar
,
P.
,
McCarthy
,
Z.
, and
Abbeel
,
P.
,
2019
, “
Quasi-Direct Drive for Low-Cost Compliant Robotic Manipulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Montreal, Quebec, Canada, May 20–24, pp.
437
443
.
12.
Arifin
,
A. S.
,
Ang
,
M. H.
,
Lai
,
C. Y.
, and
Lim
,
C. W.
,
2013
, “
General Framework of the Force and Compliant Motion Control for Macro Mini Manipulator
,”
2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Wollongong, Australia, July 9–12,
IEEE
, pp.
949
954
.
13.
Mohammad
,
A. E. K.
,
Hong
,
J.
, and
Wang
,
D.
,
2018
, “
Design of a Force-Controlled End-Effector With Low-Inertia Effect for Robotic Polishing Using Macro-Mini Robot Approach
,”
Robot. Comput. Int. Manuf.
,
49
(
1
), pp.
54
65
. 10.1016/j.rcim.2017.05.011
14.
Labrecque
,
P. D.
,
Laliberté
,
T.
,
Foucault
,
S.
,
Abdallah
,
M. E.
, and
Gosselin
,
C.
,
2017
, “
uMan: A Low-Impedance Manipulator for Human–Robot Cooperation Based on Underactuated Redundancy
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1401
1411
. 10.1109/TMECH.2017.2652322
15.
Badeau
,
N.
,
Gosselin
,
C.
,
Foucault
,
S.
,
Laliberté
,
T.
, and
Abdallah
,
M. E.
,
2018
, “
Intuitive Physical Human–Robot Interaction
,”
IEEE Robot. Autom. Mag.
,
25
(
2
), pp.
28
38
. 10.1109/mra.2018.2800520
16.
Boucher
,
G.
,
Laliberté
,
T.
, and
Gosselin
,
C.
,
2019
, “
A Parallel Low-Impedance Sensing Approach for Highly Responsive Physical Human–Robot Interaction
,”
2019 International Conference on Robotics and Automation (ICRA)
, Montreal, Quebec, Canada, May 20–24,
IEEE
, pp.
3754
3760
.
17.
Stewart
,
D.
,
1965
, “
A Platform With Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
. 10.1243/PIME_PROC_1965_180_029_02
18.
De Santis
,
A.
,
Siciliano
,
B.
,
De Luca
,
A.
, and
Bicchi
,
A.
,
2008
, “
An Atlas of Physical Human–Robot Interaction
,”
Mech. Mach. Theory
,
43
(
3
), pp.
253
270
. 10.1016/j.mechmachtheory.2007.03.003
19.
Kosuge
,
K.
,
Okuda
,
M.
,
Fukuda
,
T.
,
Koduka
,
T.
, and
Mizuno
,
T.
,
1993
, “
Input/Output Force Analysis of Stewart Platform Type of Manipulators
,”
Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems’ 93, IROS’93
, Yokohama, Japan, July 26–30, Vol.
3
,
IEEE
, pp.
1666
1673
.
20.
Husty
,
M. L.
,
1996
, “
An Algorithm for Solving the Direct Kinematic of Stewart–Gough-Tuype Platforms
,”
Mech. Mach. Theory
,
31
(
4
), pp.
365
380
. 10.1016/0094-114X(95)00091-C
21.
Dietmaier
,
P.
,
1998
, “The Stewart–Gough Platform of General Geometry Can Have 40 Real Postures,”
Advances in Robot Kinematics: Analysis and Control
,
J.
Lenarcic
and
M.L.
Husty
, eds.,
Springer
,
New York
, pp.
7
16
.
22.
Innocenti
,
C.
,
2001
, “
Forward Kinematics in Polynomial Form of the General Stewart Platform
,”
ASME J. Mech. Des.
,
123
(
2
), pp.
254
260
. 10.1115/1.1348018
23.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T.
,
2000
, “
The Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
. 10.1016/S0094-114X(99)00006-3
24.
Angeles
,
J.
,
2002
,
Fundamentals of Robotic Mechanical Systems
,
Springer
,
New York
.
25.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Robot.
,
26
(
1
), pp.
166
173
. 10.1109/TRO.2009.2037252
26.
Labrecque
,
P. D.
,
Haché
,
J. -M.
,
Abdallah
,
M.
, and
Gosselin
,
C.
,
2016
, “
Low-Impedance Physical Human–Robot Interaction Using ann Active–Passive Dynamics Decoupling
,”
IEEE Robot. Autom. Lett.
,
1
(
2
), pp.
938
945
. 10.1109/LRA.2016.2531124
You do not currently have access to this content.