Abstract

Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) manufacturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
Hoboken, NJ
.
2.
Bloom
,
D. A.
,
McGuire
,
E. J.
, and
Lapides
,
J.
,
1994
, “
A Brief History of Urethral Catheterization
,”
J. Urol.
,
151
(
2
), pp.
317
325
. 10.1016/S0022-5347(17)34937-6
3.
Fowler
,
R.
,
Howell
,
L.
, and
Magleby
,
S.
,
2011
, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
205
215
. 10.5194/ms-2-205-2011
4.
Howell
,
L. L.
,
Magleby
,
S. P.
,
Olsen
,
B. M.
, and
Wiley
,
J.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley Online Library
.
5.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
Springer
,
New York
, pp.
189
216
.
6.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
193
214
.
7.
Kota
,
S.
,
Lu
,
K.-J.
,
Kreiner
,
Z.
,
Trease
,
B.
,
Arenas
,
J.
, and
Geiger
,
J.
,
2005
, “
Design and Application of Compliant Mechanisms for Surgical Tools
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
981
989
. 10.1115/1.2056561
8.
Burgner-Kahrs
,
J.
,
Rucker
,
D. C.
, and
Choset
,
H.
,
2015
, “
Continuum Robots for Medical Applications: A Survey
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1261
1280
. 10.1109/TRO.2015.2489500
9.
Entsfellner
,
K.
,
Kuru
,
I.
,
Maier
,
T.
,
Gumprecht
,
J. D.
, and
Lüth
,
T.
,
2014
, “
First 3D Printed Medical Robot for ENT Surgery—Application Specific Manufacturing of Laser Sintered Disposable Manipulators
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, pp.
4278
4283
.
10.
Lan
,
C.-C.
, and
Wang
,
J.-Y.
,
2011
, “
Design of Adjustable Constant-Force Forceps for Robot-Assisted Surgical Manipulation
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
386
391
.
11.
Li
,
L.
, and
Chew
,
Z. J.
,
2018
, “Microactuators: Design and Technology,”
Smart Sensors and MEMS
,
Elsevier
, pp.
313
354
.
12.
Lobontiu
,
N.
,
2020
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
13.
Gafford
,
J. B.
,
Kesner
,
S. B.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2013
, “
Microsurgical Devices by Pop-Up Book MEMS
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
.
14.
Russo
,
S.
,
Ranzani
,
T.
,
Gafford
,
J.
,
Walsh
,
C. J.
, and
Wood
,
R. J.
,
2016
, “
Soft Pop-Up Mechanisms for Micro Surgical Tools: Design and Characterization of Compliant Millimeter-Scale Articulated Structures
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
750
757
.
15.
Gassert
,
R.
,
Moser
,
R.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2006
, “
MRI/fMRI-Compatible Robotic System With Force Feedback for Interaction With Human Motion
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
216
224
. 10.1109/TMECH.2006.871897
16.
Hong
,
M. B.
, and
Jo
,
Y.-H.
,
2012
, “
Design and Evaluation of 2-DOF Compliant Forceps With Force-Sensing Capability for Minimally Invasive Robot Surgery
,”
IEEE Trans. Rob.
,
28
(
4
), pp.
932
941
. 10.1109/TRO.2012.2194889
17.
Halverson
,
P. A.
,
2010
, “
Modeling, Design, and Testing of Contact-Aided Compliant Mechanisms in Spinal Arthroplasty
,” Ph.D. thesis,
Brigham Young University-Provo
,
Provo, UT
.
18.
James
,
K. A.
, and
Waisman
,
H.
,
2016
, “
Layout Design of a Bi-Stable Cardiovascular Stent Using Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
869
890
. 10.1016/j.cma.2016.02.036
19.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
. 10.1007/s11548-017-1545-1
20.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Classification for Literature on Compliant Mechanisms: A Design Methodology Based Approach
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
289
297
.
21.
Hegde
,
S.
, and
Ananthasuresh
,
G.
,
2010
, “
Design of Single-Input-Single-Output Compliant Mechanisms for Practical Applications Using Selection Maps
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081007
. 10.1115/1.4001877
22.
Hegde
,
S.
, and
Ananthasuresh
,
G.
,
2012
, “
A Spring-Mass-Lever Model, Stiffness and Inertia Maps for Single-Input, Single-Output Compliant Mechanisms
,”
Mech. Mach. Theory.
,
58
, pp.
101
119
. 10.1016/j.mechmachtheory.2012.01.006
23.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
. 10.1016/j.precisioneng.2009.06.008
24.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (Fct). Part Ii: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
. 10.1016/j.precisioneng.2009.06.007
25.
Su
,
H.-J.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
. 10.1115/1.3211024
26.
Hoetmer
,
K.
,
Herder
,
J. L.
, and
Kim
,
C. J.
,
2009
, “
A Building Block Approach for the Design of Statically Balanced Compliant Mechanisms
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
313
323
.
27.
Lamers
,
A.
,
Sánchez
,
J. A. G.
, and
Herder
,
J. L.
,
2015
, “
Design of a Statically Balanced Fully Compliant Grasper
,”
Mech. Mach. Theory.
,
92
, pp.
230
239
. 10.1016/j.mechmachtheory.2015.05.014
28.
Kim
,
C. J.
,
Moon
,
Y. -M.
, and
Kota
,
S.
,
2008
, “
A Building Block Approach to the Conceptual Synthesis of Compliant Mechanisms Utilizing Compliance and Stiffness Ellipsoids
,”
ASME J. Mech. Des.
,
130
(
2
), p.
022308
. 10.1115/1.2821387
29.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2011
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
. 10.1115/1.4002513
30.
Sun
,
Y.
,
Liu
,
Y.
,
Xu
,
L.
, and
Lueth
,
T. C.
,
2019
, “
Design of a Disposable Compliant Medical Forceps Using Topology Optimization Techniques
,”
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
,
Dec. 6–8
, pp.
924
929
.
31.
de Lange
,
D. J.
,
Langelaar
,
M.
, and
Herder
,
J. L.
,
2008
, “
Towards the Design of a Statically Balanced Compliant Laparoscopic Grasper Using Topology Optimization
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
, pp.
293
305
.
32.
Tan
,
U.-X.
,
Yang
,
B.
,
Gullapalli
,
R.
, and
Desai
,
J. P.
,
2010
, “
Triaxial MRI-Compatible Fiber-Optic Force Sensor
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
65
74
. 10.1109/TRO.2010.2090061
33.
Guimarães
,
T.
,
Oliveira
,
S.
, and
Duarte
,
M.
,
2008
, “
Application of the Topological Optimization Technique to the Stents Cells Design for Angioplasty
,”
J. Braz. Soc. Mech. Sci. Eng.
,
30
(
3
), pp.
261
268
. 10.1590/S1678-58782008000300012
34.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
238
245
. 10.1115/1.2826242
35.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
36.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2000
, “
On an Optimal Property of Compliant Topologies
,”
Struct. Multidiscip. Optim.
,
19
(
1
), pp.
36
49
. 10.1007/s001580050084
37.
Thomas
,
T. L.
,
Venkiteswaran
,
V. K.
,
Ananthasuresh
,
G. K.
, and
Misra
,
S.
,
2020
, “
A Monolithic Compliant Continuum Manipulator: A Proof-of-Concept Study
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061006
. 10.1115/1.4046838
38.
Tolou
,
N.
, and
Herder
,
J. L.
,
2009
, “
Concept and Modeling of a Statically Balanced Compliant Laparoscopic Grasper
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
163
170
.
39.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large-Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
. 10.1115/1.2826101
40.
Su
,
H.-J.
,
2009
, “
A Pseudorigid-Body 3r Model for Determining Large Deflection of Cantilever Beams Subject to Tip Loads
,”
ASME J. Mech. Rob.
,
1
(
2
), p.
021008
. 10.1115/1.3046148
41.
Venkiteswaran
,
V. K.
, and
Su
,
H.-J.
,
2016
, “
Pseudo-Rigid-Body Models for Circular Beams Under Combined Tip Loads
,”
Mech. Mach. Theory.
,
106
, pp.
80
93
. 10.1016/j.mechmachtheory.2016.08.011
42.
Baichapur
,
G. S.
,
Gugale
,
H.
,
Maheshwari
,
A.
,
Bhargav
,
S. D.
, and
Ananthasuresh
,
G.
,
2014
, “
A Vision-Based Micro-Newton Static Force Sensor Using a Displacement-Amplifying Compliant Mechanism (DaCM)
,”
Mech. Based Des. Struct. Mach.
,
42
(
2
), pp.
193
210
. 10.1080/15397734.2013.864938
43.
Khan
,
S.
, and
Ananthasuresh
,
G.
,
2014
, “
Improving the Sensitivity and Bandwidth of In-Plane Capacitive Micro-Accelerometers Using Compliant Mechanical Amplifiers
,”
J. Microelectromech. Syst.
,
23
(
4
), pp.
871
887
. 10.1109/JMEMS.2014.2300231
44.
Khan
,
S.
, and
Ananthasuresh
,
G.
,
2014
, “
A Micromachined Wideband In-plane Single-Axis Capacitive Accelerometer With a Displacement-Amplifying Compliant Mechanism
,”
Mech. Based Des. Struct. Mach.
,
42
(
3
), pp.
355
370
. 10.1080/15397734.2014.908299
45.
Amellal
,
K.
,
Tzoganakis
,
C.
,
Penlidis
,
A.
, and
Rempel
,
G. L.
,
1994
, “
Injection Molding of Medical Plastics: A Review
,”
Adv. Polymer Technol.: J. Polymer Process. Institute
,
13
(
4
), pp.
315
322
. 10.1002/adv.1994.060130407
46.
Tan
,
U.-X.
,
Latt
,
W. T.
,
Shee
,
C. Y.
, and
Ang
,
W. T.
,
2010
, “
A Low-Cost Flexure-Based Handheld Mechanism for Micromanipulation
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
773
778
. 10.1109/TMECH.2010.2069568
47.
Chandrasekaran
,
K.
, and
Thondiyath
,
A.
,
2017
, “
Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool
,”
ASME J. Med. Devices.
,
11
(
1
), p.
014502
. 10.1115/1.4034879
48.
Chandrasekaran
,
K.
,
Sathuluri
,
A.
, and
Thondiyath
,
A.
,
2017
, “
MagNex—Expendable Robotic Surgical Tooltip
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
4221
4226
.
49.
Polygerinos
,
P.
,
Seneviratne
,
L. D.
,
Razavi
,
R.
,
Schaeffter
,
T.
, and
Althoefer
,
K.
,
2012
, “
Triaxial Catheter-Tip Force Sensor for MRI-Guided Cardiac Procedures
,”
IEEE/ASME Trans. Mechatron.
,
18
(
1
), pp.
386
396
. 10.1109/TMECH.2011.2181405
50.
Kesner
,
S. B.
, and
Howe
,
R. D.
,
2011
, “
Design Principles for Rapid Prototyping Forces Sensors Using 3-D Printing
,”
IEEE/ASME Trans. Mechatron.
,
16
(
5
), pp.
866
870
. 10.1109/TMECH.2011.2160353
51.
Stratasys Ltd.
,
2020
, “
Biocompatible
,” https://www.stratasys.com/materials/search/biocompatible, Accessed August 7, 2020.
52.
Liu
,
N.
,
Bergeles
,
C.
, and
Yang
,
G.-Z.
,
2016
, “
Design and Analysis of a Wire-Driven Flexible Manipulator for Bronchoscopic Interventions
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
4058
4063
.
53.
Grames
,
C. L.
,
Tanner
,
J. D.
,
Jensen
,
B. D.
,
Magleby
,
S. P.
,
Steger
,
J. R.
, and
Howell
,
L. L.
,
2015
, “
A Meso-Scale Rolling-Contact Gripping Mechanism for Robotic Surgery
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
54.
Choi
,
D. Y.
, and
Riviere
,
C. N.
,
2006
, “
Flexure-Based Manipulator for Active Handheld Microsurgical Instrument
,”
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference
,
Shanghai, China
,
Jan. 17–18
, pp.
2325
2328
.
55.
Ebert-Uphoff
,
I.
,
Gosselin
,
C. M.
,
Rosen
,
D. W.
, and
Laliberte
,
T.
,
2005
,
Rapid Prototyping for Robotics. Cutting Edge Rob
,
IntechOpen
,
UK
, pp.
17
46
.
56.
Krieger
,
Y. S.
,
Roppenecker
,
D. B.
,
Kuru
,
I.
, and
Lueth
,
T. C.
,
2017
, “
Multi-Arm Snake-Like Robot
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
2490
2495
.
57.
Tan
,
K.
,
Chua
,
C.
,
Leong
,
K.
,
Cheah
,
C.
,
Gui
,
W.
,
Tan
,
W.
, and
Wiria
,
F.
,
2005
, “
Selective Laser Sintering of Biocompatible Polymers for Applications in Tissue Engineering
,”
Bio-Medical Mater. Eng.
,
15
(
1, 2
), pp.
113
124
.
58.
Sun
,
Y.
,
Liu
,
Y.
, and
Lueth
,
T. C.
,
2019
, “
Fe-Analysis of Bio-Inspired Compliant Mechanisms in Matlab for Medical Applications
,”
2019 IEEE International Conference on Cyborg and Bionic Systems (CBS)
,
Munich, Germany
,
Sept. 18–20
, pp.
54
59
.
59.
Hu
,
Y.
,
Zhang
,
L.
,
Li
,
W.
, and
Yang
,
G.-Z.
,
2019
, “
Design and Fabrication of a 3-D Printed Metallic Flexible Joint for Snake-Like Surgical Robot
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1557
1563
. 10.1109/LRA.2019.2896475
60.
Yap
,
C. Y.
,
Chua
,
C. K.
,
Dong
,
Z. L.
,
Liu
,
Z. H.
,
Zhang
,
D. Q.
,
Loh
,
L. E.
, and
Sing
,
S. L.
,
2015
, “
Review of Selective Laser Melting: Materials and Applications
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041101
. 10.1063/1.4935926
61.
Coemert
,
S.
,
Traeger
,
M. F.
,
Graf
,
E. C.
, and
Lueth
,
T. C.
,
2017
, “
Suitability Evaluation of Various Manufacturing Technologies for the Development of Surgical Snake-Like Manipulators From Metals Based on Flexure Hinges
,”
Procedia CIRP
,
65
, pp.
1
6
. 10.1016/j.procir.2017.03.108
62.
Disch
,
A.
,
Lutze
,
T.
,
Schauer
,
D.
,
Mueller
,
C.
, and
Reinecke
,
H.
,
2008
, “
Innovative Polymer-Based Shaft Instruments for Minimally Invasive Surgery
,”
Minim. Invasive Ther. Allied Technol.
,
17
(
5
), pp.
275
284
. 10.1080/13645700802390004
63.
Swaney
,
P. J.
,
York
,
P. A.
,
Gilbert
,
H. B.
,
Burgner-Kahrs
,
J.
, and
Webster
,
R. J.
,
2017
, “
Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments
,”
ASME J. Med. Devices.
,
11
(
1
), p.
014501
. 10.1115/1.4034575
64.
Bhargav
,
S. D.
,
Chakravarthy
,
S.
, and
Ananthasuresh
,
G.
,
2012
, “
A Compliant End-Effector to Passively Limit the Force in Tele-Operated Tissue-Cutting
,”
ASME J. Med. Devices.
,
6
(
4
), p.
041005
. 10.1115/1.4007638
65.
Chapuis
,
D.
,
Gassert
,
R.
,
Sache
,
L.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2004
, “
Design of a Simple MRI/fMRI Compatible Force/Torque Sensor
,”
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Sendai, Japan
,
Sept. 28–Oct. 2
,Vol.
3
,pp.
2593
2599
.
66.
Gassert
,
R.
,
Chapuis
,
D.
,
Bleuler
,
H.
, and
Burdet
,
E.
,
2008
, “
Sensors for Applications in Magnetic Resonance Environments
,”
IEEE/ASME Trans. Mechatron.
,
13
(
3
), pp.
335
344
. 10.1109/TMECH.2008.924113
67.
Suh
,
J.-w.
,
Kim
,
K.-y.
,
Jeong
,
J.-w.
, and
Lee
,
J.-j.
,
2015
, “
Design Considerations for a Hyper-Redundant Pulleyless Rolling Joint With Elastic Fixtures
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2841
2852
. 10.1109/TMECH.2015.2389228
68.
Dewaele
,
F.
,
Kalmar
,
A. F.
,
De Ryck
,
F.
,
Lumen
,
N.
,
Williams
,
L.
,
Baert
,
E.
,
Vereecke
,
H.
,
Kalala Okito
,
J. P.
,
Mabilde
,
C.
,
Blanckaert
,
B.
, and
Keereman
,
V.
,
2014
, “
A Novel Design for Steerable Instruments Based on Laser-Cut Nitinol
,”
Surgical Innovation
,
21
(
3
), pp.
303
311
. 10.1177/1553350613508015
69.
Gassert
,
R.
,
Dovat
,
L.
,
Lambercy
,
O.
,
Ruffieux
,
Y.
,
Chapuis
,
D.
,
Ganesh
,
G.
,
Burdet
,
E.
, and
Bleuler
,
H.
,
2006
, “
A 2-DOF FMRI Compatible Haptic Interface to Investigate the Neural Control of Arm Movements
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
3825
3831
.
70.
Haga
,
Y.
,
Muyari
,
Y.
,
Goto
,
S.
,
Matsunaga
,
T.
, and
Esashi
,
M.
,
2011
, “
Development of Minimally Invasive Medical Tools Using Laser Processing on Cylindrical Substrates
,”
Electr. Eng. Jpn
,
176
(
1
), pp.
65
74
. 10.1002/eej.21030
71.
Fischer
,
H.
,
Vogel
,
B.
,
Pfleging
,
W.
, and
Besser
,
H.
,
1999
, “
Flexible Distal Tip Made of Nitinol (niti) for a Steerable Endoscopic Camera System
,”
Mater. Sci. Eng. A.
,
273
, pp.
780
783
. 10.1016/S0921-5093(99)00415-3
72.
Doria
,
M.
, and
Birglen
,
L.
,
2009
, “
Design of an Underactuated Compliant Gripper for Surgery Using Nitinol
,”
ASME J. Med. Devices.
,
3
(
1
), p.
011007
. 10.1115/1.3089249
73.
Zubir
,
M. N. M.
, and
Shirinzadeh
,
B.
,
2009
, “
Development of a High Precision Flexure-Based Microgripper
,”
Precis. Eng.
,
33
(
4
), pp.
362
370
. 10.1016/j.precisioneng.2008.10.003
74.
Peirs
,
J.
,
Van Brussel
,
H.
,
Reynaerts
,
D.
, and
De Gersem
,
G.
,
2002
, “
A Flexible Distal Tip With Two Degrees of Freedom for Enhanced Dexterity in Endoscopic Robot Surgery
,”
Proceedings of the 13th Micromechanics Europe Workshop
,
Sinaia, Romania
,
Oct. 6–8
, pp.
271
274
.
75.
Yoneyama
,
T.
,
Watanabe
,
T.
,
Kagawa
,
H.
,
Hamada
,
J.
,
Hayashi
,
Y.
, and
Nakada
,
M.
,
2011
, “
Force Detecting Gripper and Flexible Micro Manipulator for Neurosurgery
,”
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30–Sept. 3
, pp.
6695
6699
.
76.
Gao
,
A.
,
Murphy
,
R. J.
,
Liu
,
H.
,
Iordachita
,
I. I.
, and
Armand
,
M.
,
2016
, “
Mechanical Model of Dexterous Continuum Manipulators With Compliant Joints and Tendon/External Force Interactions
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
465
475
. 10.1109/TMECH.2016.2612833
77.
Coemert
,
S.
,
Gao
,
A.
,
Carey
,
J. P.
,
Traeger
,
M. F.
,
Taylor
,
R. H.
,
Lueth
,
T. C.
, and
Armand
,
M.
,
2016
, “
Development of a Snake-Like Dexterous Manipulator for Skull Base Surgery
,”
2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Orlando, FL
,
Aug. 16–20
, pp.
5087
5090
.
78.
Alambeigi
,
F.
,
Bakhtiarinejad
,
M.
,
Azizi
,
A.
,
Hegeman
,
R.
,
Iordachita
,
I.
,
Khanuja
,
H.
, and
Armand
,
M.
,
2018
, “
Inroads Toward Robot-Assisted Internal Fixation of Bone Fractures Using a Bendable Medical Screw and the Curved Drilling Technique
,”
2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Enschede, The Netherlands
,
Aug. 26–29
, pp.
595
600
.
79.
Sieklicki
,
W.
,
Zoppi
,
M.
, and
Molfino
,
R.
,
2009
, “
Superelastic Compliant Mechanisms for Needlescopic Surgical Wrists
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, pp.
392
399
.
80.
Peirs
,
J.
,
Clijnen
,
J.
,
Reynaerts
,
D.
,
Van Brussel
,
H.
,
Herijgers
,
P.
,
Corteville
,
B.
, and
Boone
,
S.
,
2004
, “
A Micro Optical Force Sensor for Force Feedback During Minimally Invasive Robotic Surgery
,”
Sens. Actuators. A.
,
115
(
2–3
), pp.
447
455
. 10.1016/j.sna.2004.04.057
81.
Theisen
,
W.
, and
Schuermann
,
A.
,
2004
, “
Electro Discharge Machining of Nickel–Titanium Shape Memory Alloys
,”
Mater. Sci. Eng. A.
,
378
(
1–2
), pp.
200
204
. 10.1016/j.msea.2003.09.115
82.
Prakash
,
C.
,
Kansal
,
H. K.
,
Pabla
,
B.
,
Puri
,
S.
, and
Aggarwal
,
A.
,
2016
, “
Electric Discharge Machining—A Potential Choice for Surface Modification of Metallic Implants for Orthopedic Applications: A Review
,”
Proc. Inst. Mech. Eng. B.
,
230
(
2
), pp.
331
353
. 10.1177/0954405415579113
83.
Gafford
,
J. B.
,
Kesner
,
S. B.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2013
, “
Force-Sensing Surgical Grasper Enabled by Pop-Up Book MEMS
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
2552
2558
.
84.
Pathak
,
R. K.
,
Kumar
,
A. R.
, and
Ananthasuresh
,
G.
,
2013
, “
Simulations and Experiments in Punching Spring-Steel Devices With Sub-Millimeter Features
,”
J. Manuf. Process.
,
15
(
1
), pp.
108
114
. 10.1016/j.jmapro.2012.09.018
85.
Bejgerowski
,
W.
,
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Bruck
,
H. A.
,
2011
, “
Design and Fabrication of Miniature Compliant Hinges for Multi-Material Compliant Mechanisms
,”
Int. J. Adv. Manuf. Technol.
,
57
(
5–8
), p.
437
. 10.1007/s00170-011-3301-y
86.
Scharvogel
,
M.
, and
Winkelmueller
,
W.
,
2011
, “
Metal Injection Molding of Titanium for Medical and Aerospace Applications
,”
JOM
,
63
(
2
), pp.
94
96
. 10.1007/s11837-011-0036-z
87.
Goodship
,
V.
,
2004
,
Practical Guide to Injection Moulding
,
Smithers Rapra
,
UK
.
88.
Sun
,
Y.
,
Liu
,
Y.
,
Xu
,
L.
,
Zou
,
Y.
,
Faragasso
,
A.
, and
Lueth
,
T. C.
,
2020
, “
Automatic Design of Compliant Surgical Forceps With Adaptive Grasping Functions
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
1095
1102
. 10.1109/LRA.2020.2967715
89.
Abbott
,
D. J.
,
Becke
,
C.
,
Rothstein
,
R. I.
, and
Peine
,
W. J.
,
2007
, “
Design of an Endoluminal NOTES Robotic System
,”
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
410
416
.
90.
Breedveld
,
P.
,
Sheltes
,
J.
,
Blom
,
E. M.
, and
Verheij
,
J. E.
,
2005
, “
A New, Easily Miniaturized Steerable Endoscope
,”
IEEE Eng. Med. Biol. Mag.
,
24
(
6
), pp.
40
47
. 10.1109/MEMB.2005.1549729
91.
Johnson
,
P. J.
,
Serrano
,
C. M. R.
,
Castro
,
M.
,
Kuenzler
,
R.
,
Choset
,
H.
,
Tully
,
S.
, and
Duvvuri
,
U.
,
2013
, “
Demonstration of Transoral Surgery in Cadaveric Specimens With the Medrobotics Flex System
,”
Laryngoscope
,
123
(
5
), pp.
1168
1172
. 10.1002/lary.23512
92.
Le
,
H. M.
,
Do
,
T. N.
, and
Phee
,
S. J.
,
2016
, “
A Survey on Actuators-Driven Surgical Robots
,”
Sens. Actuators., A.
,
247
, pp.
323
354
. 10.1016/j.sna.2016.06.010
93.
Zoppi
,
M.
,
Sieklicki
,
W.
, and
Molfino
,
R.
,
2008
, “
Design of a Microrobotic Wrist for Needle Laparoscopic Surgery
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102306
. 10.1115/1.2965608
94.
Salerno
,
M.
,
Zhang
,
K.
,
Menciassi
,
A.
, and
Dai
,
J. S.
,
2016
, “
A Novel 4-DOF Origami Grasper With An SMA-Actuation System for Minimally Invasive Surgery
,”
IEEE Trans. Rob.
,
32
(
3
), pp.
484
498
. 10.1109/TRO.2016.2539373
95.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A.
,
419
(
1–2
), pp.
131
137
. 10.1016/j.msea.2005.12.016
96.
Taylor
,
A. J.
,
Slutzky
,
T.
,
Feuerman
,
L.
,
Ren
,
H.
,
Tokuda
,
J.
,
Nilsson
,
K.
, and
Tse
,
Z. T. H.
,
2019
, “
MR-Conditional SMA-Based Origami Joint
,”
IEEE/ASME Trans. Mechatron.
,
24
(
2
), pp.
883
888
. 10.1109/TMECH.2019.2891993
97.
Morgan
,
N.
,
2004
, “
Medical Shape Memory Alloy Applications—The Market and Its Products
,”
Mater. Sci. Eng. A.
,
378
(
1–2
), pp.
16
23
. 10.1016/j.msea.2003.10.326
98.
Tarniţă
,
D.
,
Tarniţă
,
D.
,
Bîzdoacă
,
N.
,
Mîndrilă
,
I.
, and
Vasilescu
,
M.
,
2009
, “
Properties and Medical Applications of Shape Memory Alloys
,”
Rom J. Morphol. Embryol.
,
50
(
1
), pp.
15
21
. 10.1007/978-90-481-3522-6_60
99.
Nakamura
,
Y.
,
Matsui
,
A.
,
Saito
,
T.
, and
Yoshimoto
,
K.
,
1995
, “
Shape-Memory-Alloy Active Forceps for Laparoscopic Surgery
,”
Proceedings of 1995 IEEE International Conference on Robotics and Automation (ICRA)
,
Nagoya, Japan
,
May 21–27
, Vol.
3
, pp.
2320
2327
.
100.
Haddab
,
Y.
,
Chaillet
,
N.
, and
Bourjault
,
A.
,
2000
, “
A Microgripper Using Smart Piezoelectric Actuators
,”
Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Takamatsu, Japan
,
Oct. 31–Nov. 5
, Vol.
1
, pp.
659
664
.
101.
Krucinski
,
S.
,
Vesely
,
I.
,
Dokainish
,
M.
, and
Campbell
,
G.
,
1993
, “
Numerical Simulation of Leaflet Flexure in Bioprosthetic Valves Mounted on Rigid and Expansile Stents
,”
J. Biomech.
,
26
(
8
), pp.
929
943
. 10.1016/0021-9290(93)90055-J
102.
Liaw
,
H. C.
,
Shirinzadeh
,
B.
, and
Smith
,
J.
,
2007
, “
Robust Adaptive Motion Tracking Control of Piezoelectric Actuation Systems for Micro/Nano Manipulation
,”
Proceedings 2007 IEEE International Conference on Robotics and Automation (ICRA)
,
Roma, Italy
,
Apr. 10–14
, pp.
1110
1115
.
103.
Xu
,
Q.
, and
Tan
,
K. K.
,
2016
,
Advanced Control of Piezoelectric Micro-/Nano-Positioning Systems
,
Springer
,
New York
.
104.
Forbrigger
,
C.
,
Lim
,
A.
,
Onaizah
,
O.
,
Salmanipour
,
S.
,
Looi
,
T.
,
Drake
,
J.
, and
Diller
,
E. D.
,
2019
, “
Cable-Less, Magnetically Driven Forceps for Minimally Invasive Surgery
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1202
1207
. 10.1109/LRA.2019.2894504
105.
Simi
,
M.
,
Tolou
,
N.
,
Valdastri
,
P.
,
Herder
,
J.
,
Menciassi
,
A.
, and
Dario
,
P.
,
2012
, “
Modeling of a Compliant Joint in a Magnetic Levitation System for an Endoscopic Camera
,”
Mech. Sci.
,
3
(
1
), pp.
5
14
. 10.5194/ms-3-5-2012
106.
Yim
,
S.
, and
Sitti
,
M.
,
2011
, “
Design and Analysis of a Magnetically Actuated and Compliant Capsule Endoscopic Robot
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
4810
4815
.
107.
Heunis
,
C. M.
,
Sikorski
,
J.
, and
Misra
,
S.
,
2018
, “
Flexible Instruments for Endovascular Interventions: Improved Magnetic Steering, Actuation, and Image-Guided Surgical Instruments
,”
IEEE Rob. Autom. Mag.
,
25
(
3
), pp.
71
82
. 10.1109/MRA.2017.2787784
108.
De Greef
,
A.
,
Lambert
,
P.
, and
Delchambre
,
A.
,
2009
, “
Towards Flexible Medical Instruments: Review of Flexible Fluidic Actuators
,”
Precis. Eng.
,
33
(
4
), pp.
311
321
. 10.1016/j.precisioneng.2008.10.004
109.
Jovanova
,
J.
,
Nastevska
,
A.
,
Frecker
,
M.
, and
Aguirre
,
M. E.
,
2018
, “
Analysis of a Functionally Graded Compliant Mechanism Surgical Grasper
,”
2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, pp.
1
8
.
110.
Aguirre
,
M.
, and
Herder
,
J.
,
2015
, “
Technology Demonstrator for Compliant Statically Balanced Surgical Graspers
,”
ASME J. Med. Devices.
,
9
(
2
), p.
020926
. 10.1115/1.4030131
111.
Piccin
,
O.
,
Kumar
,
N.
,
Meylheuc
,
L.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2012
, “
Design, Development and Preliminary Assessment of Grasping Devices for Robotized Medical Applications
,”
ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Chicago, IL
,
Aug. 12–15
, pp.
65
73
.
112.
Cronin
,
J. A.
,
Frecker
,
M. I.
, and
Mathew
,
A.
,
2008
, “
Design of a Compliant Endoscopic Suturing Instrument
,”
ASME J. Med. Devices.
,
2
(
2
), p.
025002
. 10.1115/1.2931551
113.
Aguirre
,
M. E.
, and
Frecker
,
M.
,
2008
, “
Design Innovation Size and Shape Optimization of a 1.0 mm Multifunctional Forceps-Scissors Surgical Instrument
,”
ASME J. Med. Devices.
,
2
(
1
), p.
015001
. 10.1115/1.2885141
114.
Frecker
,
M. I.
,
Powell
,
K. M.
, and
Haluck
,
R.
,
2005
, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
990
993
. 10.1115/1.2056560
115.
Arata
,
J.
,
Fujisawa
,
Y.
,
Nakadate
,
R.
,
Kiguchi
,
K.
,
Harada
,
K.
,
Mitsuishi
,
M.
, and
Hashizume
,
M.
,
2019
, “
Compliant Four Degree-of-Freedom Manipulator With Locally Deformable Elastic Elements for Minimally Invasive Surgery
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
2663
2669
.
116.
Awtar
,
S.
,
Trutna
,
T. T.
,
Nielsen
,
J. M.
,
Abani
,
R.
, and
Geiger
,
J.
,
2010
, “
Flexdex™: A Minimally Invasive Surgical Tool With Enhanced Dexterity and Intuitive Control
,”
ASME J. Med. Devices.
,
4
(
3
), p.
035003
. 10.1115/1.4002234
117.
Gao
,
A.
,
Zhou
,
Y.
,
Cao
,
L.
,
Wang
,
Z.
, and
Liu
,
H.
,
2018
, “
Fiber Bragg Grating-Based Triaxial Force Sensor With Parallel Flexure Hinges
,”
IEEE Trans. Ind. Electron.
,
65
(
10
), pp.
8215
8223
. 10.1109/TIE.2018.2798569
118.
Turkseven
,
M.
, and
Ueda
,
J.
,
2012
, “
Analysis of an MRI Compatible Force Sensor for Sensitivity and Precision
,”
IEEE Sensors J.
,
13
(
2
), pp.
476
486
. 10.1109/JSEN.2012.2218282
119.
Martin
,
T.
,
Gengenbach
,
U.
,
Guth
,
H.
,
Ruther
,
P.
,
Paul
,
O.
, and
Bretthauer
,
G.
,
2012
, “
Silicon Linkage With Novel Compliant Mechanism for Piezoelectric Actuation of an Intraocular Implant
,”
Sens. Actuators., A.
,
188
, pp.
335
341
. 10.1016/j.sna.2012.02.016
120.
Herrmann
,
H. C.
,
Mankame
,
N.
, and
Ananthasuresh
,
S. G.
,
2009
, “
Percutaneous Heart Valve
,”
US Patent 7,621,948
.
121.
Frecker
,
M. I.
,
Dziedzic
,
R.
, and
Haluck
,
R.
,
2002
, “
Design of Multifunctional Compliant Mechanisms for Minimally Invasive Surgery
,”
Minim. Invasive Ther. Allied Technol.
,
11
(
5–6
), pp.
311
319
. 10.1080/13645706.2003.11873732
122.
Aguirre
,
M. E.
, and
Frecker
,
M.
,
2006
, “
Design of a 1.0 Mm Multifunctional Forceps-Scissors Instrument for Minimally Invasive Surgery
,”
ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
557
563
.
123.
George B
,
L.
, and
Bharanidaran
,
R.
,
2020
, “
A Novel Design of Compliant Forceps With Serpentine Flexures
,”
Aust. J. Mech. Eng.
, pp.
1
8
. 10.1080/14484846.2020.1725349
124.
O’Hanley
,
H.
,
Rosario
,
M.
,
Chen
,
Y.
,
Maertens
,
A.
,
Walton
,
J.
, and
Rosen
,
J.
,
2011
, “
Design and Testing of a Three Fingered Flexural Laparoscopic Grasper
,”
ASME J. Med. Devices.
,
5
(
2
), p.
027508
. 10.1115/1.3589289
125.
Aguirre
,
M. E.
, and
Frecker
,
M.
,
2010
, “
Design and Optimization of Hybrid Compliant Narrow-Gauge Surgical Forceps
,”
ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Philadelphia, PA
,
Sept. 28–Oct. 1
, pp.
779
788
.
126.
Aguirre
,
M.
,
Hayes
,
G.
,
Meirom
,
R.
,
Frecker
,
M. I.
,
Muhlstein
,
C.
, and
Adair
,
J. H.
,
2011
, “
Optimal Design and Fabrication of Narrow-Gauge Compliant Forceps
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081005
. 10.1115/1.4004539
127.
Aguirre
,
M. E.
, and
Frecker
,
M.
,
2011
, “
Design of a Multi-Contact-Aided Compliant Mechanism
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
255
259
.
128.
Canfield
,
S.
,
Edinger
,
B.
,
Frecker
,
M. I.
, and
Koopmann
,
G. H.
,
1999
, “
Design of a Piezoelectric Inchworm Actuator and Compliant End Effector for Minimally Invasive Surgery
,”
Smart Structures and Materials 1999: Smart Structures and Integrated Systems
,
Newport Beach, CA
,
June 9
, pp.
835
843
.
129.
Shuib
,
S.
,
Yusoff
,
R.
,
Hassan
,
A.
,
Ridzwan
,
M.
, and
Ibrahim
,
M.
,
2007
, “
A Disposable Compliant-Forceps for HIV Patients
,”
J. Med. Sci.
,
7
(
4
), pp.
591
596
. 10.3923/jms.2007.591.596
130.
Gonenc
,
B.
,
Handa
,
J.
,
Gehlbach
,
P.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2013
, “
Design of 3-DOF Force Sensing Micro-Forceps for Robot Assisted Vitreoretinal Surgery
,”
2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Osaka, Japan
,
July 3–7
, pp.
5686
5689
.
131.
Yang
,
M.
,
Culkar
,
K. M.
,
Powell
,
K.
,
Frecker
,
M. I.
, and
Zahn
,
J. D.
,
2004
, “
Design and Fabrication of a UV-LIGA Compliant Micrograsper for Ophthalmic Surgery
,”
ASME 2004 International Mechanical Engineering Congress and Exposition
,
Anaheim, CA
,
Nov. 13–19
, pp.
159
164
.
132.
Goldfarb
,
M.
, and
Celanovic
,
N.
,
1999
, “
A Flexure-Based Gripper for Small-Scale Manipulation
,”
Robotica
,
17
(
2
), pp.
181
187
. 10.1017/S026357479900096X
133.
Jelínek
,
F.
,
Arkenbout
,
E. A.
,
Henselmans
,
P. W.
,
Pessers
,
R.
, and
Breedveld
,
P.
,
2014
, “
Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art
,”
ASME J. Med. Devices.
,
8
(
3
), p.
030914
. 10.1115/1.4027035
134.
Ramu
,
G.
, and
Ananthasuresh
,
G.
,
2009
, “
A Flexure-Based Deployable Stereo Vision Mechanism and Temperature and Force Sensors for Laparoscopic Tools
,”
Proceedings of the 14th National Conference on Machines and Mechanisms (NaCoMM)
,
NIT, Durgapur, India
,
Dec. 17–18
.
135.
Peirs
,
J.
,
Reynaerts
,
D.
,
Van Brussel
,
H.
,
De Gersem
,
G.
, and
Tang
,
H.-W.
,
2003
, “
Design of an Advanced Tool Guiding System for Robotic Surgery
,”
2003 IEEE International Conference on Robotics and Automation (ICRA)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol.
2
,pp.
2651
2656
.
136.
Kanada
,
Y.
,
Yoneyama
,
T.
,
Watanabe
,
T.
,
Kagawa
,
H.
,
Sugiyama
,
N.
,
Tanaka
,
K.
, and
Hanyu
,
T.
,
2013
, “
Force Feedback Manipulating System for Neurosurgery
,”
Procedia CIRP
,
5
, pp.
133
136
. 10.1016/j.procir.2013.01.027
137.
Kato
,
T.
,
Okumura
,
I.
,
Song
,
S.-E.
,
Golby
,
A. J.
, and
Hata
,
N.
,
2014
, “
Tendon-Driven Continuum Robot for Endoscopic Surgery: Preclinical Development and Validation of a Tension Propagation Model
,”
IEEE/ASME Trans. Mechatron.
,
20
(
5
), pp.
2252
2263
. 10.1109/TMECH.2014.2372635
138.
Kato
,
T.
,
Okumura
,
I.
,
Kose
,
H.
,
Takagi
,
K.
, and
Hata
,
N.
,
2014
, “
Extended Kinematic Mapping of Tendon-Driven Continuum Robot for Neuroendoscopy
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Chicago, IL
,
Sept. 14–18
, pp.
1997
2002
.
139.
Eastwood
,
K. W.
,
Francis
,
P.
,
Azimian
,
H.
,
Swarup
,
A.
,
Looi
,
T.
,
Drake
,
J. M.
, and
Naguib
,
H. E.
,
2018
, “
Design of a Contact-Aided Compliant Notched-Tube Joint for Surgical Manipulation in Confined Workspaces
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
015001
. 10.1115/1.4038254
140.
Wei
,
D.
,
Wenlong
,
Y.
,
Dawei
,
H.
, and
Zhijiang
,
D.
,
2012
, “
Modeling of Flexible Arm With Triangular Notches for Applications in Single Port Access Abdominal Surgery
,”
2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Guangzhou, China
,
Dec. 11–14
, pp.
588
593
.
141.
Wenlong
,
Y.
,
Wei
,
D.
, and
Zhijiang
,
D.
,
2013
, “
Mechanics-Based Kinematic Modeling of a Continuum Manipulator
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5052
5058
.
142.
Du
,
Z.
,
Yang
,
W.
, and
Dong
,
W.
,
2015
, “
Kinematics Modeling of a Notched Continuum Manipulator
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041017
. 10.1115/1.4028935
143.
Du
,
Z.
,
Yang
,
W.
, and
Dong
,
W.
,
2015
, “
Kinematics Modeling and Performance Optimization of a Kinematic-Mechanics Coupled Continuum Manipulator
,”
Mechatronics
,
31
, pp.
196
204
. 10.1016/j.mechatronics.2015.09.001
144.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1776
1781
.
145.
Eastwood
,
K. W.
,
Azimian
,
H.
,
Carrillo
,
B.
,
Looi
,
T.
,
Naguib
,
H. E.
, and
Drake
,
J. M.
,
2016
, “
Kinetostatic Design of Asymmetric Notch Joints for Surgical Robots
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
2381
2387
.
146.
Kutzer
,
M. D.
,
Segreti
,
S. M.
,
Brown
,
C. Y.
,
Armand
,
M.
,
Taylor
,
R. H.
, and
Mears
,
S. C.
,
2011
, “
Design of a New Cable-Driven Manipulator With a Large Open Lumen: Preliminary Applications in the Minimally-Invasive Removal of Osteolysis
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
2913
2920
.
147.
Liu
,
W. P.
,
Lucas
,
B. C.
,
Guerin
,
K.
, and
Plaku
,
E.
,
2011
, “
Sensor and Sampling-Based Motion Planning for Minimally Invasive Robotic Exploration of Osteolytic Lesions
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
, pp.
1346
1352
.
148.
Murphy
,
R. J.
,
Moses
,
M. S.
,
Kutzer
,
M. D.
,
Chirikjian
,
G. S.
, and
Armand
,
M.
,
2013
, “
Constrained Workspace Generation for Snake-Like Manipulators With Applications to Minimally Invasive Surgery
,”
2013 IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
5341
5347
.
149.
Murphy
,
R. J.
,
Kutzer
,
M. D.
,
Segreti
,
S. M.
,
Lucas
,
B. C.
, and
Armand
,
M.
,
2014
, “
Design and Kinematic Characterization of a Surgical Manipulator With a Focus on Treating Osteolysis
,”
Robotica
,
32
(
6
), pp.
835
850
. 10.1017/S0263574713001082
150.
Moses
,
M. S.
,
Murphy
,
R. J.
,
Kutzer
,
M. D.
, and
Armand
,
M.
,
2015
, “
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
,”
IEEE/ASME Trans. Mechatron.
,
20
(
6
), pp.
2876
2889
. 10.1109/TMECH.2015.2396894
151.
Alambeigi
,
F.
,
Murphy
,
R. J.
,
Basafa
,
E.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2014
, “
Control of the Coupled Motion of a 6 DoF Robotic Arm and a Continuum Manipulator for the Treatment of Pelvis Osteolysis
,”
2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Chicago, IL
,
Aug. 26–30
, pp.
6521
6525
.
152.
Wilkening
,
P.
,
Alambeigi
,
F.
,
Murphy
,
R. J.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2017
, “
Development and Experimental Evaluation of Concurrent Control of a Robotic Arm and Continuum Manipulator for Osteolytic Lesion Treatment
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1625
1631
. 10.1109/LRA.2017.2678543
153.
Liu
,
H.
,
Farvardin
,
A.
,
Grupp
,
R.
,
Murphy
,
R. J.
,
Taylor
,
R. H.
,
Iordachita
,
I.
, and
Armand
,
M.
,
2015
, “
Shape Tracking of a Dexterous Continuum Manipulator Utilizing Two Large Deflection Shape Sensors
,”
IEEE Sensors J.
,
15
(
10
), pp.
5494
5503
. 10.1109/JSEN.2015.2442266
154.
Gao
,
A.
,
Carey
,
J. P.
,
Murphy
,
R. J.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2016
, “
Progress Toward Robotic Surgery of the Lateral Skull Base: Integration of a Dexterous Continuum Manipulator and Flexible Ring Curette
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
4429
4435
.
155.
Coemert
,
S.
,
Alambeigi
,
F.
,
Deguet
,
A.
,
Carey
,
J.
,
Armand
,
M.
,
Lueth
,
T.
, and
Taylor
,
R.
,
2016
, “
Integration of a Snake-Like Dexterous Manipulator for Head and Neck Surgery With the Da Vinci Research Kit
,”
Proceedings of Hamlyn Symposium on Medical Robotics
,
London, UK
,
June
, pp.
58
59
.
156.
Alambeigi
,
F.
,
Wang
,
Y.
,
Murphy
,
R. J.
,
Iordachita
,
I.
, and
Armand
,
M.
,
2016
, “
Toward Robot-Assisted Hard Osteolytic Lesion Treatment Using a Continuum Manipulator
,”
2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Orlando, FL
,
Aug. 16–20
, pp.
5103
5106
.
157.
Alambeigi
,
F.
,
Sefati
,
S.
,
Murphy
,
R. J.
,
Iordachita
,
I.
, and
Armand
,
M.
,
2016
, “
Design and Characterization of a Debriding Tool in Robot-Assisted Treatment of Osteolysis
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
5664
5669
.
158.
Alambeigi
,
F.
,
Wang
,
Y.
,
Sefati
,
S.
,
Gao
,
C.
,
Murphy
,
R. J.
,
Iordachita
,
I.
,
Taylor
,
R. H.
,
Khanuja
,
H.
, and
Armand
,
M.
,
2017
, “
A Curved-Drilling Approach in Core Decompression of the Femoral Head Osteonecrosis Using a Continuum Manipulator
,”
IEEE Rob. Autom. Lett.
,
2
(
3
), pp.
1480
1487
. 10.1109/LRA.2017.2668469
159.
Alambeigi
,
F.
,
Bakhtiarinejad
,
M.
,
Sefati
,
S.
,
Hegeman
,
R.
,
Iordachita
,
I.
,
Khanuja
,
H.
, and
Armand
,
M.
,
2019
, “
On the Use of a Continuum Manipulator and a Bendable Medical Screw for Minimally Invasive Interventions in Orthopedic Surgery
,”
IEEE Trans. Med. Rob. Bionics
,
1
(
1
), pp.
14
21
. 10.1109/TMRB.2019.2895780
160.
Dupont
,
P. E.
,
Lock
,
J.
,
Itkowitz
,
B.
, and
Butler
,
E.
,
2009
, “
Design and Control of Concentric-tube Robots
,”
IEEE Trans. Rob.
,
26
(
2
), pp.
209
225
. 10.1109/TRO.2009.2035740
161.
Gilbert
,
H. B.
,
Rucker
,
D. C.
, and
Webster
,
R. J.
, III
,
2016
, “Concentric Tube Robots: The State of the Art and Future Directions,”
Robotics Research
,
Springer
,
New York
, pp.
253
269
.
162.
Alfalahi
,
H.
,
Renda
,
F.
, and
Stefanini
,
C.
,
2020
, “
Concentric Tube Robots for Minimally Invasive Surgery: Current Applications and Future Opportunities
,”
IEEE Trans. Med. Rob. Bionics
,
2
(
3
), pp.
410
424
. 10.1109/TMRB.2020.3000899
163.
Liu
,
J.
,
Hall
,
B.
,
Frecker
,
M.
, and
Reutzel
,
E. W.
,
2013
, “
Compliant Articulation Structure Using Superelastic Nitinol
,”
Smart Mater. Struct.
,
22
(
9
), p.
094018
. 10.1088/0964-1726/22/9/094018
164.
Arata
,
J.
,
Kogiso
,
S.
,
Sakaguchi
,
M.
,
Nakadate
,
R.
,
Oguri
,
S.
,
Uemura
,
M.
,
Byunghyun
,
C.
,
Akahoshi
,
T.
,
Ikeda
,
T.
, and
Hashizume
,
M.
,
2015
, “
Articulated Minimally Invasive Surgical Instrument Based on Compliant Mechanism
,”
Int. J. Comput. Assisted Radiol. Surg.
,
10
(
11
), pp.
1837
1843
. 10.1007/s11548-015-1159-4
165.
Wu
,
Z.
,
Bandara
,
D.
,
Kiguchi
,
K.
, and
Arata
,
J.
,
2019
, “
Design Strategy for a Surgical Manipulator Based on a Compliant Mechanism: Rigidity and Range of Motion: Finding the Optimized Balance
,”
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Dali, China
,
Dec. 6–8
, pp.
2220
2224
.
166.
Hanks
,
B. W.
,
Frecker
,
M.
, and
Moyer
,
M.
,
2016
, “
Design of a Compliant Endoscopic Ultrasound-Guided Radiofrequency Ablation Probe
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
.
167.
Hanks
,
B.
,
Frecker
,
M.
, and
Moyer
,
M.
,
2017
, “
Optimization of a Compliant Endoscopic Radiofrequency Ablation Electrode
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
.
168.
Tuijthof
,
G. J.
,
Herder
,
J. L.
,
van Dijk
,
C. N.
, and
Pistecky
,
P. V.
,
2004
, “
A Compliant Instrument for Arthroscopic Joint Fusion
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
397
405
.
169.
Nai
,
T. Y.
,
Tuijthof
,
G. J. M.
, and
Herder
,
J. L.
,
2010
, “
Design of a Compliant Steerable Arthroscopic Punch
,”
J. Med. Devices
,
4
(
2
), p.
027525
. 10.1115/1.3443298
170.
Nai
,
T. Y.
,
Herder
,
J. L.
, and
Tuijthof
,
G. J.
,
2011
, “
Steerable Mechanical Joint for High Load Transmission in Minimally Invasive Instruments
,”
ASME J. Med. Devices.
,
5
(
3
), p.
034503
. 10.1115/1.4004649
171.
Swaney
,
P. J.
,
Burgner
,
J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2012
, “
A Flexure-Based Steerable Needle: High Curvature With Reduced Tissue Damage
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
906
909
. 10.1109/TBME.2012.2230001
172.
Salamon
,
B. A.
, and
Midha
,
A.
,
1998
, “
An Introduction to Mechanical Advantage in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
311
315
. 10.1115/1.2826974
173.
Herder
,
J.
, and
Van Den Berg
,
F.
,
2000
, “
Statically Balanced Compliant Mechanisms (SBCM’s), an Example and Prospects
,”
Proceedings of the 26th ASME DETC Biennial, Mechanisms and Robotics Conference
,
Baltimore, MD
,
Sept. 10–13
.
174.
Drenth
,
J.
, and
Herder
,
J. L.
,
2004
, “
Numerical Optimization of the Design of a Laparoscopic Grasper, Statically Balanced With Normal Springs
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
923
933
.
175.
Powell
,
K. M.
, and
Frecker
,
M. I.
,
2005
, “
Method for Optimization of a Nonlinear Static Balance Mechanism With Application to Ophthalmic Surgical Forceps
,”
ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, pp.
441
447
.
176.
Hoetmer
,
K.
,
Woo
,
G.
,
Kim
,
C.
, and
Herder
,
J.
,
2010
, “
Negative Stiffness Building Blocks for Statically Balanced Compliant Mechanisms: Design and Testing
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041007
. 10.1115/1.4002247
177.
Lassooij
,
J.
,
Tolou
,
N.
,
Tortora
,
G.
,
Caccavaro
,
S.
,
Menciassi
,
A.
, and
Herder
,
J.
,
2012
, “
A Statically Balanced and Bi-Stable Compliant End Effector Combined With a Laparoscopic 2DoF Robotic Arm
,”
Mech. Sci.
,
3
(
2
), pp.
85
93
. 10.5194/ms-3-85-2012
178.
Stapel
,
A.
, and
Herder
,
J. L.
,
2004
, “
Feasibility Study of a Fully Compliant Statically Balanced Laparoscopic Grasper
,”
ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
635
643
.
179.
Reddy
,
A. N.
,
Maheshwari
,
N.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G.
,
2010
, “
Miniature Compliant Grippers With Vision-Based Force Sensing
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
867
877
. 10.1109/TRO.2010.2056210
180.
Berkelman
,
P. J.
,
Whitcomb
,
L. L.
,
Taylor
,
R. H.
, and
Jensen
,
P.
,
2003
, “
A Miniature Microsurgical Instrument Tip Force Sensor for Enhanced Force Feedback During Robot-Assisted Manipulation
,”
IEEE. Trans. Rob. Autom.
,
19
(
5
), pp.
917
921
. 10.1109/TRA.2003.817526
181.
Seibold
,
U.
,
Kubler
,
B.
, and
Hirzinger
,
G.
,
2005
, “
Prototype of Instrument for Minimally Invasive Surgery With 6-Axis Force Sensing Capability
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA)
,
Barcelona, Spain
,
Apr. 18–22
, pp.
496
501
.
182.
Tada
,
M.
, and
Kanade
,
T.
,
2004
, “
An MR-Compatible Optical Force Sensor for Human Function Modeling
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Saint-Malo, France
,
Sept. 26–29
, pp.
129
136
.
183.
Tokuno
,
T.
,
Tada
,
M.
, and
Umeda
,
K.
,
2008
, “
High-Precision MRI-Compatible Force Sensor With Parallel Plate Structure
,”
2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Scottsdale, AZ
,
Oct. 19–22
, pp.
33
38
.
184.
Puangmali
,
P.
,
Althoefer
,
K.
, and
Seneviratne
,
L. D.
,
2009
, “
Novel Design of a 3-Axis Optical Fiber Force Sensor for Applications in Magnetic Resonance Environments
,”
2009 IEEE International Conference on Robotics and Automation (ICRA)
,
Kobe, Japan
,
May 12–17
, pp.
3682
3687
.
185.
Su
,
H.
, and
Fischer
,
G. S.
,
2009
, “
A 3-Axis Optical Force/Torque Sensor for Prostate Needle Placement in Magnetic Resonance Imaging Environments
,”
2009 IEEE International Conference on Technologies for Practical Robot Applications
,
Woburn, MA
,
Nov. 9–10
, pp.
5
9
.
186.
Fifanski
,
S. K.
,
Rivera Gutiérrez
,
J. L.
,
Clogenson
,
M.
,
Baur
,
C.
,
Bertholds
,
A.
,
Llosas
,
P.
, and
Henein
,
S.
,
2016
, “
Flexure-Based Multi-Degrees-of-Freedom In-Vivo Force Sensors for Medical Instruments
,”
Proceedings of EUSPEN 2016
,
Nottingham, UK
,
May 30–June 3
, pp.
333
334
.
187.
Kumar
,
N.
,
Piccin
,
O.
,
Meylheuc
,
L.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2014
, “
Design, Development and Preliminary Assessment of a Force Sensor for Robotized Medical Applications
,”
2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Besacon, France
,
July 8–11
, pp.
1368
1374
.
188.
Krishnan
,
G.
, and
Ananthasuresh
,
G.
,
2008
, “
Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102304
. 10.1115/1.2965599
189.
Turkseven
,
M.
, and
Ueda
,
J.
,
2011
, “
Design of an MRI Compatible Haptic Interface
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
San Francisco, CA
,
Sept. 25–30
, pp.
2139
2144
.
190.
Chakravarthy
,
S.
,
Balakuntala
,
M. V.
,
Rao
,
A. M.
,
Thakur
,
R. K.
, and
Ananthasuresh
,
G.
,
2018
, “
Development of an Integrated Haptic System for Simulating Upper Gastrointestinal Endoscopy
,”
Mechatronics
,
56
, pp.
115
131
. 10.1016/j.mechatronics.2018.10.006
191.
Stratton
,
E.
,
Howell
,
L.
, and
Bowden
,
A.
,
2010
, “
Force-Displacement Model of the FlexSuRe™ Spinal Implant
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
37
46
.
192.
Chen
,
Y.
,
Zion
,
T. T.
,
Wang
,
W.
,
Kwong
,
R. Y.
,
Stevenson
,
W. G.
, and
Schmidt
,
E. J.
,
2015
, “
Intra-Cardiac MR Imaging & MR-Tracking Catheter for Improved MR-Guided EP
,”
J. Cardiovasc. Magn. Reson.
,
17
(
1
), pp.
1
2
. 10.1186/s12968-014-0101-1
193.
Edmondson
,
B. J.
,
Bowen
,
L. A.
,
Grames
,
C. L.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Bateman
,
T. C.
,
2013
, “
Oriceps: Origami-Inspired Forceps
,”
ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Snowbird, UT
,
Sept. 16–18
.
194.
Gollnick
,
P. S.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2011
, “
An Introduction to Multilayer Lamina Emergent Mechanisms
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081006
. 10.1115/1.4004542
195.
Medgadget Inc
.,
2016
, “
Origami Used to Miniaturize, Improve Surgical Tools, Medical Implants
,” https://www.medgadget.com/2016/03/origami-used-to-miniaturize-improve-surgical-tools-medical-implants.html, Accessed August 7, 2020.
196.
Bobbert
,
F.
,
Janbaz
,
S.
,
van Manen
,
T.
,
Li
,
Y.
, and
Zadpoor
,
A.
,
2020
, “
Russian Doll Deployable Meta-Implants: Fusion of Kirigami, Origami, and Multi-Stability
,”
Mater. Des.
,
191
, p.
108624
. 10.1016/j.matdes.2020.108624
197.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-CORE)
,”
Mech. Mach. Theory.
,
96
, pp.
225
238
. 10.1016/j.mechmachtheory.2015.05.017
198.
Tang
,
L.
,
Chen
,
Y.
, and
He
,
X.
,
2007
, “
Multi-Material Compliant Mechanism Design and Haptic Evaluation
,”
Virtual Phys. Prototyping
,
2
(
3
), pp.
155
160
. 10.1080/17452750701691831
199.
Gouker
,
R. M.
,
Gupta
,
S. K.
,
Bruck
,
H. A.
, and
Holzschuh
,
T.
,
2006
, “
Manufacturing of Multi-Material Compliant Mechanisms Using Multi-Material Molding
,”
Int. J. Adv. Manuf. Technol.
,
30
(
11–12
), pp.
1049
1075
. 10.1007/s00170-005-0152-4
200.
Vogtmann
,
D. E.
,
Gupta
,
S. K.
, and
Bergbreiter
,
S.
,
2011
, “
Multi-Material Compliant Mechanisms for Mobile Millirobots
,”
2011 IEEE International Conference on Robotics and Automation (ICRA)
,
Shanghai, China
,
May 9–13
, pp.
3169
3174
.
201.
Conlan-Smith
,
C.
,
Bhattacharyya
,
A.
, and
James
,
K. A.
,
2018
, “
Optimal Design of Compliant Mechanisms Using Functionally Graded Materials
,”
Struct. Multidiscip. Optim.
,
57
(
1
), pp.
197
212
. 10.1007/s00158-017-1744-y
202.
Akbari
,
S.
,
Sakhaei
,
A. H.
,
Kowsari
,
K.
,
Yang
,
B.
,
Serjouei
,
A.
,
Yuanfang
,
Z.
, and
Ge
,
Q.
,
2018
, “
Enhanced Multimaterial 4d Printing With Active Hinges
,”
Smart Mater. Struct.
,
27
(
6
), p.
065027
. 10.1088/1361-665X/aabe63
203.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
. 10.1038/nature14543
204.
Joo
,
J.
,
Kota
,
S.
, and
Kikuchi
,
N.
,
2001
, “
Large Deformation Behavior of Compliant Mechanisms
,”
ASME 2001 Design Engineering Technical Conference and Computers and Information in Engineering Conference
,
Pittsburgh, PA
,
Sept. 9–12
, Vol.
1
,pp.
9
12
.
205.
Saxena
,
A.
, and
Ananthasuresh
,
G.
,
2001
, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
33
42
. 10.1115/1.1333096
206.
Joo
,
J.
, and
Kota
,
S.
,
2004
, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
,
32
(
1
), pp.
17
38
. 10.1081/SME-120026588
207.
Jung
,
D.
, and
Gea
,
H. C.
,
2004
, “
Compliant Mechanism Design With Non-Linear Materials Using Topology Optimization
,”
Int. J. Mech. Mater. Des.
,
1
(
2
), pp.
157
171
. 10.1007/s10999-004-1494-z
208.
Hao
,
G.
,
Yu
,
J.
, and
Li
,
H.
,
2016
, “
A Brief Review on Nonlinear Modeling Methods and Applications of Compliant Mechanisms
,”
Front. Mech. Eng.
,
11
(
2
), pp.
119
128
. 10.1007/s11465-016-0387-9
209.
Kota
,
S.
,
2001
, “
Compliant Systems Using Monolithic Mechanisms
,”
Smart Mater. Bull.
,
2001
(
3
), pp.
7
10
. 10.1016/S1471-3918(01)80002-2
210.
Yip
,
M. C.
,
Yuen
,
S. G.
, and
Howe
,
R. D.
,
2010
, “
A Robust Uniaxial Force Sensor for Minimally Invasive Surgery
,”
IEEE Trans. Biomed. Eng.
,
57
(
5
), pp.
1008
1011
. 10.1109/TBME.2009.2039570
You do not currently have access to this content.