Abstract

The primary compliance vector (PCV) captures the dominant kinematic behavior of a compliant mechanism. Its trajectory describes large deformation mechanism behavior and can be integrated in an optimization objective in detailed compliant mechanism design. This paper presents a general framework for the optimization of the PCV path, the mechanism trajectory of lowest energy, using a unified stiffness characterization and piecewise curve representation. We present a meaningful objective formulation for the PCV path that evaluates path shape, location, orientation, and length independently and apply the framework to two design examples. The framework is useful for design of planar and shell compliant mechanisms that traverse a specified mechanism trajectory and that are insensitive to load perturbations.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
. 10.1115/1.1900149
3.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
,
2009
, “
Unified Synthesis of Compact Planar Path-Generating Linkages With Rigid and Deformable Members
,”
Struct. Multidiscip. Optim.
,
41
(
6
), pp.
863
879
. 10.1007/s00158-009-0458-1
4.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
. 10.1016/j.mechmachtheory.2019.103622
5.
Wang
,
N. F.
, and
Tai
,
K.
,
2008
, “
Design of Grip-and-Move Manipulators Using Symmetric Path Generating Compliant Mechanisms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112305
. 10.1115/1.2976790
6.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
,
2001
, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
,
50
(
12
), pp.
2683
2705
. 10.1002/nme.148
7.
Lipkin
,
H.
, and
Patterson
,
T.
,
1992
, “
Geometrical properties of modelled robot elasticity: Part I – Decomposition
,”
DE-Vol. 45, Robotics, Spatial Mechanisms, and Mechanical Systems ASME 1992
.
8.
Leemans
,
J.
,
Kim
,
C.
,
van de Sande
,
W.
, and
Herder
,
J.
,
2018
, “
Unified Stiffness Characterization of Non-Linear Compliant Shell Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011011
. 10.1115/1.4041785
9.
van de Sande
,
W. W. P. J.
, and
Herder
,
J. L.
,
2018
, “
Analysis of Parasitic Motion in Compliant Mechanisms Using Eigenwrenches and Eigentwists
,”
Volume 5A: 42nd Mechanisms and Robotics Conference
,
Quebec City
.
10.
Farshad
,
M.
,
2013
,
Design and Analysis of Shell Structures
, Vol.
16
,
Springer Science & Business Media
,
Dordrecht
.
11.
Seffen
,
K. A.
,
2012
, “
Compliant Shell Mechanisms
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
370
(
1965
), pp.
2010
2026
. 10.1098/rsta.2011.0347
12.
Radaelli
,
G.
, and
Herder
,
J.
,
2017
, “
Gravity Balanced Compliant Shell Mechanisms
,”
Int. J. Solids Struct.
,
118–119
, pp.
78
88
. 10.1016/j.ijsolstr.2017.04.021
13.
Howell
,
L. L.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
14.
Zahn
,
C. T.
, and
Roskies
,
R. Z.
,
1972
, “
Fourier Descriptors for Plane Closed Closed Curves
,”
IEEE Trans. Comput.
,
C-21
(
3
), pp.
269
281
. 10.1109/TC.1972.5008949
15.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
.
16.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
. 10.1115/1.2826396
17.
Mankame
,
N. D.
, and
Ananthasuresh
,
G. K.
,
2007
, “
Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation
,”
Int. J. Numer. Methods Eng.
,
69
(
12
), pp.
2564
2605
. 10.1002/nme.1861
18.
Forrester
,
A. I.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
. 10.1016/j.paerosci.2008.11.001
19.
Koziel
,
S.
,
Ciaurri
,
D. E.
, and
Leifsson
,
L.
,
2011
, “Surrogate-Based Methods,”
Computational Optimization, Methods and Algorithms
,
Springer
,
Berlin, Heidelberg
, pp.
33
59
.
20.
Gutmann
,
H.-M.
,
2001
, “
A Radial Basis Function Method for Global Optimization
,”
J. Global Optim.
,
19
(
3
), pp.
201
227
. 10.1023/A:1011255519438
21.
MathWorks
,
2018
,
Global Optimization Toolbox User’s Guide
,
The MathWorks, Inc.
,
Natick, MA
.
22.
Rolton
,
D.
,
Nnadi
,
C.
, and
Fairbank
,
J.
,
2014
, “
Scoliosis: a Review
,”
Paediat. Child Health
,
24
(
5
), pp.
197
203
. 10.1016/j.paed.2013.09.014
23.
Dries
,
T.
,
2018
, “
A Biomechanical Characterization of Spinal Motion Data for the Design of a Compliant Scoliosis Brace
,” Master’s thesis,
TU Delft, Delft, The Netherlands
.
24.
Nijssen
,
J.
,
2017
, “
A Type Synthesis Approach to Compliant Shell Mechanisms
,” Master’s thesis,
TU Delft, Delft, The Netherlands
.
You do not currently have access to this content.