Abstract

Magnetic adsorption mechanisms are widely used for wall-climbing robots to manipulate a locomotive on the surface of a magnetic conducting metal. However, the reported magnetic adsorption mechanisms are subject to the problems such as the lack of adsorption capability, the weakness of kinematic performance, and the overwhelming detaching force. To solve the problems, a novel style of a permanent-magnetic adsorption mechanism using an electromagnetic method and internal force compensation principle is detailed in this work. Specifically, a permanent magnet, an electromagnet, and a nonlinear spring are configurated to achieve a reliable adsorption function by using the minimal detaching force. Following that, the results obtained from both the finite element analysis and the experiments carried out by using a prototype demonstrated its effectiveness. It does not only have a rapid and controllable adsorption-detachment capacity in reference to the magnetic conducting surface but also has low power consumption, large adsorption force, and reliable and safe performance.

References

1.
Murphy
,
M. P.
,
Kute
,
C.
,
Mengüç
,
Y.
, and
Sitti
,
M.
,
2011
, “
Waalbot II: Adhesion Recovery and Improved Performance of a Climbing Robot Using Fibrillar Adhesives
,”
Int. J. Rob. Res.
,
30
(
1
), pp.
118
133
. 10.1177/0278364910382862
2.
Provancher
,
W. R.
,
Jensen-Segal
,
S. I.
, and
Fehlberg
,
M. A.
,
2010
, “
ROCR: An Energy-Efficient Dynamic Wall-Climbing Robot
,”
IEEE/ASME Trans. Mechatronics
,
16
(
5
), pp.
897
906
. 10.1109/TMECH.2010.2053379
3.
Liu
,
Y.
,
Kim
,
H.
, and
Seo
,
T.
,
2016
, “
AnyClimb: A New Wall-Climbing Robotic Platform for Various Curvatures
,”
IEEE/ASME Trans. Mechatronics
,
21
(
4
), pp.
1812
1821
. 10.1109/TMECH.2016.2529664
4.
Liu
,
Y.
, and
Seo
,
T.
,
2018
, “
AnyClimb-II: Dry-Adhesive Linkage-Type Climbing Robot for Uneven Vertical Surfaces
,”
Mech. Mach. Theory
,
124
, pp.
197
210
. 10.1016/j.mechmachtheory.2018.02.010
5.
Fujita
,
M.
,
Ikeda
,
S.
,
Fujimoto
,
T.
,
Shimizu
,
T.
,
Ikemoto
,
S.
, and
Miyamoto
,
T.
,
2018
, “
Development of Universal Vacuum Gripper for Wall-Climbing Robot
,”
Adv. Rob.
,
32
(
6
), pp.
283
296
. 10.1080/01691864.2018.1447238
6.
Gu
,
G.
,
Zou
,
J.
,
Zhao
,
R.
,
Zhao
,
X.
, and
Zhu
,
X.
,
2018
, “
Soft Wall-Climbing Robots
,”
Sci. Rob.
,
3
(
25
), p.
2874
. 10.1126/scirobotics.aat2874
7.
Germann
,
J.
,
Schubert
,
B.
, and
Floreano
,
D.
,
2014
, “
Stretchable Electroadhesion for Soft Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
3933
3938
.
8.
Ge
,
D.
,
Ren
,
C.
,
Matsuno
,
T.
, and
Ma
,
S.
,
2016
, “
Guide Rail Design for a Passive Suction Cup Based Wall-Climbing Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
5776
5781
.
9.
Zhu
,
H.
,
Guan
,
Y.
,
Wu
,
W.
,
Zhang
,
L.
,
Zhou
,
X.
, and
Zhang
,
H.
,
2014
, “
Autonomous Pose Detection and Alignment of Suction Modules of a Biped Wall-Climbing Robot
,”
IEEE/ASME Trans. Mechatronics
,
20
(
2
), pp.
653
662
. 10.1109/TMECH.2014.2317190
10.
Minor
,
M. A.
, and
Mukherjee
,
R.
,
2003
, “
Under-Actuated Kinematic Structures for Miniature Climbing Robots
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
281
291
. 10.1115/1.1564075
11.
Yan
,
C.
,
Sun
,
Z.
,
Zhang
,
W.
, and
Chen
,
Q.
,
2016
, “
Design of Novel Multidirectional Magnetized Permanent Magnetic Adsorption Device for Wall-Climbing Robots
,”
Int. J. Precision Eng. Manuf.
,
17
(
7
), pp.
871
878
. 10.1007/s12541-016-0106-9
12.
Tavakoli
,
M.
,
Lourenco
,
J.
,
Viegas
,
C.
,
Neto
,
P.
, and
de Almeida
,
A. T.
,
2016
, “
The Hybrid OmniClimber Robot: Wheel Based Climbing, Arm Based Plane Transition, and Switchable Magnet Adhesion
,”
Mechatronics
,
36
, pp.
136
146
. 10.1016/j.mechatronics.2016.03.007
13.
Huang
,
H.
,
Li
,
D.
,
Xue
,
Z.
,
Chen
,
X.
,
Liu
,
S.
,
Leng
,
J.
, and
Wei
,
Y.
,
2017
, “
Design and Performance Analysis of a Tracked Wall-Climbing Robot for Ship Inspection in Shipbuilding
,”
Ocean Eng.
,
131
, pp.
224
230
. 10.1016/j.oceaneng.2017.01.003
14.
Huang
,
K.
,
Sun
,
Y.
,
Yang
,
J.
,
Hao
,
M.
,
Chen
,
Y.
,
Hong
,
X.
, and
Li
,
X.
,
2019
, “
Researches on a Wall-Climbing Robot Based on Electromagnetic Adsorption
,”
IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference
,
Chengdu, China
,
Mar. 15–17
, pp.
644
647
.
15.
Liu
,
X.
,
Chen
,
R.
,
Xue
,
Z.
,
Lei
,
Y.
, and
Tian
,
J.
,
2018
, “
Design and Optimization of a Novel Swirling Sucker for Underwater Wall-Climbing Robots
,”
IEEE 14th International Conference on Automation Science and Engineering
,
Munich, Germany
,
Aug. 20–24
, pp.
1000
1005
.
16.
Cui
,
D.
,
Chen
,
D.
,
Dong
,
H.
,
Zhang
,
L.
,
Qi
,
F.
,
Lei
,
Y.
, and
Gao
,
X.
,
2016
, “
Design and Analysis of Climbing Robot Based on Construction Surface Inspection
,”
Chinese Control and Decision Conference
,
Yinchuan, China
,
May 28–30
, pp.
5331
5336
.
17.
Ding
,
W. S.
,
Wang
,
X. C.
, and
Tang
,
C. T.
,
2016
, “
Structural Design of Permanent-Magnet Adsorption Tracked Ship Wall-Climbing Robot
,”
Hydromechatronics Eng.
,
44
(
6
), pp.
6
11
.
18.
Mao
,
J.
,
He
,
K.
,
Li
,
J.
, and
Sun
,
X.
,
2016
, “
Simulation and Experimental Verification of Permanent Magnet Adsorption Unit for Wall-Climbing Robot
,”
IEEE International Conference on Information and Automation
,
Ningbo, China
,
Aug. 1–3
, pp.
1189
1194
.
19.
Li
,
H. J.
,
Yan
,
J. J.
,
Liu
,
Y. W.
, and
Chen
,
W.
,
2015
, “
Research Status and Analysis of Technology Application for Magnetic Adsorption Wall-Climbing Robots in China
,”
International Conference on Information Engineering for Mechanics and Materials
,
Huhhot, Inner Mongolia
,
July 25–26
, pp.
1754
1757
.
20.
Schoeneich
,
P.
,
Rochat
,
F.
,
Nguyen
,
O. T. D.
,
Moser
,
R.
, and
Mondada
,
F.
,
2011
, “
TRIPILLAR: A Miniature Magnetic Caterpillar Climbing Robot With Plane Transition Ability
,”
Robotica
,
29
(
7
), pp.
1075
1081
. 10.1017/S0263574711000257
21.
Tâche
,
F.
,
Fischer
,
W.
,
Caprari
,
G.
,
Siegwart
,
R.
,
Moser
,
R.
, and
Mondada
,
F.
,
2009
, “
Magnebike: A Magnetic Wheeled Robot With High Mobility for Inspecting Complex-Shaped Structures
,”
J. Field Rob.
,
26
(
5
), pp.
453
476
. 10.1002/rob.20296
22.
Mintchev
,
S.
,
Donati
,
E.
,
Marrazza
,
S.
, and
Stefanini
,
C.
,
2014
, “
Mechatronic Design of a Miniature Underwater Robot for Swarm Operations
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
2938
2943
.
23.
Fang
,
F.
,
Wang
,
T.
, and
Li
,
B.
,
2015
, “
Analysis and Design of Electromagnetic Vehicles Climbing on Steel Plates
,”
IEEE International Conference on Mechatronics and Automation
,
Beijing, China
,
Aug. 2–5
, pp.
1223
1227
.
24.
Nam
,
S.
,
Oh
,
J.
,
Lee
,
G.
,
Kim
,
J.
, and
Seo
,
T.
,
2014
, “
Dynamic Analysis During Internal Transition of a Compliant Multi-Body Climbing Robot With Magnetic Adhesion
,”
J.Mech. Sci. Technol.
,
28
(
12
), pp.
5175
5187
. 10.1007/s12206-014-1141-z
25.
Suzuki
,
M.
,
Kitai
,
S.
, and
Hirose
,
S.
,
2008
, “
Advanced Child Unit of “Anchor Climber” Using Modified Internally-Balanced Magnet
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp.
1489
1494
.
26.
Nagaya
,
K.
,
Yoshino
,
T.
,
Katayama
,
M.
,
Murakami
,
I.
, and
Ando
,
Y.
,
2012
, “
Wireless Piping Inspection Vehicle Using Magnetic Adsorption Force
,”
IEEE/ASME Trans. Mechatronics
,
17
(
3
), pp.
472
479
. 10.1109/TMECH.2011.2182201
You do not currently have access to this content.