Abstract

A mechanism with lumped-compliance can be constructed by mounting springs at joints of an inverted slider crank mechanism. Different mounting schemes bring change in the stiffness performance. In this paper, a unified stiffness model is developed for a comprehensive analysis of the stiffness performance for mechanisms constructed with different spring mounting schemes. With the model, stiffness behaviors of spring-loaded inverted slider crank mechanisms are analyzed. Influences of each individual spring on the overall performance are characterized. The unified stiffness model allows designing mechanisms for a desired stiffness performance, such as constant-torque mechanism and variable stiffness mechanism, both being illustrated with a design example and experiments.

References

1.
Li
,
M.
, and
Cheng
,
W.
,
2018
, “
Design and Experimental Validation of a Large-Displacement Constant-Force Mechanism
,”
ASME J. Mech. Robot.
,
10
(
5
), p.
051007
. 10.1115/1.4040437
2.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
. 10.1016/j.mechmachtheory.2012.12.002
3.
Prakashah
,
H. N.
, and
Zhou
,
H.
,
2016
, “
Synthesis of Constant Torque Compliant Mechanisms
,”
ASME J. Mech. Robot.
,
8
(
6
), p.
064503
. 10.1115/1.4034885
4.
Li
,
Z.
, and
Bai
,
S.
,
2019
, “
A Novel Revolute Joint of Variable Stiffness With Reconfigurability
,”
Mech. Mach. Theory
,
133
, pp.
720
736
. 10.1016/j.mechmachtheory.2018.12.011
5.
Awad
,
M. I.
,
Hussain
,
I.
,
Gan
,
D.
,
Az-zu’bi
,
A.
,
Stefanini
,
C.
,
Khalaf
,
K.
,
Zweiri
,
Y.
,
Taha
,
T.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2018
, “
Passive Discrete Variable Stiffness Joint (pDVSJ-II): Modeling, Design, Characterization, and Testing Toward Passive Haptic Interface
,”
ASME J. Mech. Robot.
,
11
(
1
), p.
011005
. 10.1115/1.4041640
6.
Xu
,
Q.
,
2016
, “
Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage
,”
ASME J. Mech. Robot.
,
9
(
1
), p.
011006
. 10.1115/1.4035220
7.
Hao
,
G.
,
2018
, “
A Framework of Designing Compliant Mechanisms With Nonlinear Stiffness Characteristics
,”
Microsystem Technol.
,
24
(
4
), pp.
1795
1802
. 10.1007/s00542-017-3538-y
8.
Zhou
,
L.
, and
Bai
,
S.
,
2015
, “
A New Approach to Design of a Lightweight Anthropomorphic Arm for Service Applications
,”
ASME J. Mech. Robot.
,
7
(
3
), p.
031001
. 10.1115/1.4028292
9.
Christensen
,
S.
, and
Bai
,
S.
,
2018
, “
Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage
,”
ASME J. Mech. Robot.
,
10
(
4
), p.
041008
. 10.1115/1.4040132
10.
Shaw
,
A.
,
Neild
,
S.
, and
Wagg
,
D.
,
2013
, “
Dynamic Analysis of High Static Low Dynamic Stiffness Vibration Isolation Mounts
,”
J. Sound Vib.
,
332
(
6
), pp.
1437
1455
. 10.1016/j.jsv.2012.10.036
11.
Ibrahim
,
R.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3
), pp.
371
452
. 10.1016/j.jsv.2008.01.014
12.
Austin
,
J.
,
Schepelmann
,
A.
, and
Geyer
,
H.
,
2015
, “
Control and Evaluation of Series Elastic Actuators with Nonlinear Rubber Springs
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sep. 28–Oct. 2
, pp.
6563
6568
.
13.
Park
,
J.-J.
,
Lee
,
Y.-J.
,
Song
,
J.-B.
, and
Kim
,
H.-S.
,
2008
, “
Safe Joint Mechanism Based on Nonlinear Stiffness for Safe Human-Robot Collision
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
2177
2182
.
14.
Wu
,
T.-M.
,
Wang
,
S.-Y.
, and
Chen
,
D.-Z.
,
2011
, “
Design of An Exoskeleton for Strengthening the Upper Limb Muscle for Overextension Injury Prevention
,”
Mech. Mach. Theory
,
46
(
12
), pp.
1825
1839
. 10.1016/j.mechmachtheory.2011.08.003
15.
Arakelian
,
V.
, and
Ghazaryan
,
S.
,
2008
, “
Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices
,”
Mech. Mach. Theory
,
43
(
5
), pp.
565
575
. 10.1016/j.mechmachtheory.2007.05.002
16.
Liu
,
Z.
,
Niu
,
F.
,
Gao
,
H.
,
Yu
,
H.
,
Ding
,
L.
,
Li
,
N.
, and
Deng
,
Z.
,
2018
, “
Design, Analysis, and Experimental Validation of An Active Constant-Force System Based on a Low-stiffness Mechanism
,”
Mech. Mach. Theory
,
130
, pp.
1
26
. 10.1016/j.mechmachtheory.2018.07.019
17.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2004
, “
Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints
,”
ASME J. Mech. Design
,
126
(
4
), pp.
657
666
. 10.1115/1.1760776
18.
Sun
,
X.
,
Xu
,
J.
,
Wang
,
F.
, and
Zhang
,
S.
,
2018
, “
A Novel Isolation Structure With Flexible Joints for Impact and Ultralow-frequency Excitations
,”
Int. J. Mech. Sci.
,
146–147
, pp.
366
376
. 10.1016/j.ijmecsci.2018.08.009
19.
Pham
,
M. T.
,
Yeo
,
S. H.
,
Teo
,
T. J.
,
Wang
,
P.
, and
Nai
,
M. L. S.
,
2019
, “
Design and Optimization of a Three Degrees-of-Freedom Spatial Motion Compliant Parallel Mechanism With Fully Decoupled Motion Characteristics
,”
ASME J. Mech. Robot.
,
11
(
5
), p.
051010
. 10.1115/1.4043925
20.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intel. Mat. Syst. Str.
,
24
(
11
), pp.
1303
1312
. 10.1177/1045389X12444940
21.
dos Santos
,
W. M.
,
Caurin
,
G. A.
, and
Siqueira
,
A. A.
,
2017
, “
Design and Control of An Active Knee Orthosis Driven by a Rotary Series Elastic Actuator
,”
Control Eng. Pract.
,
58
, pp.
307
318
. 10.1016/j.conengprac.2015.09.008
22.
Hao
,
G.
,
Mullins
,
J.
, and
Cronin
,
K.
,
2017
, “
Simplified Modelling and Development of a Bi-directionally Adjustable Constant-Force Compliant Gripper
,”
Proc. IMechE. Part C: J. Mech. Eng. Sci.
,
231
(
11
), pp.
2110
2123
. 10.1177/0954406216628557
23.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
. 10.1016/j.mechmachtheory.2015.05.006
24.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME. J. Mech. Design
,
116
(
1
), pp.
280
290
. 10.1115/1.2919359
25.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME. J. Mech. Design
,
118
(
1
), pp.
126
131
. 10.1115/1.2826843
26.
Li
,
Z.
,
Chen
,
W.
, and
Bai
,
S.
,
2019
, “
A Novel Reconfigurable Revolute Joint With Adjustable Stiffness
,”
IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
8388
8393
.
27.
Bacek
,
T.
,
Moltedo
,
M.
,
Rodriguez-Guerrero
,
C.
,
Geeroms
,
J.
,
Vanderborght
,
B.
, and
Lefeber
,
D.
,
2018
, “
Design and Evaluation of a Torque-Controllable Knee Joint Actuator With Adjustable Series Compliance and Parallel Elasticity
,”
Mech. Mach. Theory
,
130
, pp.
71
85
. 10.1016/j.mechmachtheory.2018.08.014
28.
Han
,
N.
, and
Cao
,
Q.
,
2016
, “
Global Bifurcations of a Rotating Pendulum With Irrational Nonlinearity
,”
Commun. Nonlinear Sci. Numer. Simulat.
,
36
, pp.
431
445
. 10.1016/j.cnsns.2015.12.009
29.
Li
,
B.
, and
Hao
,
G.
,
2018
, “
Nonlinear Behaviour Design Using the Kinematic Singularity of a General Type of Double-Slider Four-bar Linkage
,”
Mech. Mach. Theory
,
129
, pp.
106
130
. 10.1016/j.mechmachtheory.2018.07.016
30.
Baker
,
M. S.
, and
Howell
,
L. L.
,
2002
, “
On-Chip Actuation of An In-plane Compliant Bistable Micromechanism
,”
J. Microelectromech. Syst.
,
11
(
5
), pp.
566
573
. 10.1109/JMEMS.2002.803284
31.
Wolf
,
S.
,
Grioli
,
G.
,
Eiberger
,
O.
,
Friedl
,
W.
,
Grebenstein
,
M.
,
Höppner
,
H.
,
Burdet
,
E.
,
Caldwell
,
D. G.
,
Carloni
,
R.
,
Catalano
,
M. G.
,
Lefeber
,
D.
,
Stramigioli
,
S.
,
Tsagarakis
,
N.
,
Van Damme
,
M.
,
Van Ham
,
R.
,
Vanderborght
,
B.
,
Visser
,
L. C.
,
Bicchi
,
A.
, and
Albu-Schaffer
,
A.
,
2016
, “
Variable Stiffness Actuators: Review on Design and Components
,”
IEEE/ASME Trans. Mechatronics
,
21
(
5
), pp.
2418
2430
. 10.1109/TMECH.2015.2501019
32.
Owaki
,
D.
, and
Ishiguro
,
A.
,
2006
, “
Enhancing Stability of a Passive Dynamic Running Biped by Exploiting a Nonlinear Spring
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
4923
4928
.
You do not currently have access to this content.