Abstract
A mechanism with lumped-compliance can be constructed by mounting springs at joints of an inverted slider crank mechanism. Different mounting schemes bring change in the stiffness performance. In this paper, a unified stiffness model is developed for a comprehensive analysis of the stiffness performance for mechanisms constructed with different spring mounting schemes. With the model, stiffness behaviors of spring-loaded inverted slider crank mechanisms are analyzed. Influences of each individual spring on the overall performance are characterized. The unified stiffness model allows designing mechanisms for a desired stiffness performance, such as constant-torque mechanism and variable stiffness mechanism, both being illustrated with a design example and experiments.