Abstract

Traditionally, the deflected configuration of compliant segments is determined through rigorous mathematical analysis using Newtonian mechanics. Application of this approach in evaluating the deformed configuration of compliant mechanisms, containing a variety of segment types, becomes cumbersome. This paper introduces a methodology to determine the possible deflected configuration(s) of a compliant mechanism, for a given set of load and/or displacement boundary conditions. The methodology utilizes the principle of minimum potential energy, in conjunction with the degrees-of-freedom analysis and the pseudo-rigid-body model concept. The static mode shape(s) of compliant segments are integrated in identifying the possible deflected configuration(s) of a given compliant mechanism. The methodology facilitates the in situ determination of the possible deformed configuration(s) of the compliant mechanism and its constituent segments. This, in turn, assists in the important task of identifying an appropriate pseudo-rigid-body model for the design and analysis of a compliant mechanism. The proposed methodology is illustrated with examples, and supported with experimental validation.

References

1.
Midha
,
A.
,
Norton
,
T. W.
, and
Howell
,
L. L.
,
1994
, “
On the Nomenclature, Classification and Abstractions of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
270
279
10.1115/1.2919358.
2.
Midha
,
A.
, and
Her
,
I.
,
1985
,
Research Notes
,
Purdue University
,
West Lafayette, IN
.
3.
Salamon
,
B. A.
, and
Midha
,
A.
,
1998
, “
An Introduction to Mechanical Advantage in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
120
(
1
), pp.
311
315
10.1115/1.2826974.
4.
Salamon
,
B. A.
,
1989
, “
Mechanical Advantage Aspects in Compliant Mechanisms Design
,”
M.S. Thesis
,
Purdue University
,
West Lafayette, IN
.
5.
Howell
,
L. L.
, and
Midha
,
A.
,
1995
, “
Parametric Deflection Approximations for End-Loaded, Large Deflection Beams in Compliant Mechanisms
,”
ASME J. Mech. Des.
,
117
(
1
), pp.
156
165
10.1115/1.2826101.
6.
Howell
,
L. L.
,
Midha
,
A.
, and
Norton
,
T. W.
,
1996
, “
Evaluation of Equivalent Spring Stiffness for Use in a Pseudo-Rigid-Body Model of Large-Deflection Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
126
131
10.1115/1.2826843.
7.
Howell
,
L. L.
,
1993
, “
A Generalized Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
Ph.D. Dissertation
,
Purdue University
,
West Lafayette, IN
.
8.
Pauly
,
J.
, and
Midha
,
A.
,
2004
, “
Improved Pseudo-Rigid-Body Model Parameter Values for End-Force-Loaded Compliant Beams
,”
Proceedings of the IDETC/CIE
,
Salt Lake City, UT
,
Sep. 28–Oct. 2
, ASME Paper No. DETC2004-57580, pp.
1513
1517
.
9.
Midha
,
A.
, and
Kuber
,
R.
,
2014
, “
Closed-Form Elliptic Integral Solution of Initially-Straight and Initially-Curved Small-Length Flexural Pivots
,”
Proceedings of the IDETC/CIE
,
Buffalo, NY
,
Aug. 17–20
, ASME Paper No. DETC2014-35268, V05AT08A044, pp.
1
7
10.
Midha
,
A.
,
Bapat
,
S. G.
,
Mavanthoor
,
A.
, and
Chinta
,
V.
,
2015
, “
Analysis of a Fixed-Guided Compliant Beam With an Inflection Point Using the Pseudo-Rigid-Body Model Concept
,”
ASME J. Mech. Rob.
,
7
(
3
), p.
031007
10.1115/1.4028131.
11.
Howell
,
L. L.
, and
Midha
,
A.
,
1994
, “
A Method for the Design of Compliant Mechanisms With Small-Length Flexural Pivots
,”
ASME J. Mech. Des.
,
116
(
1
), pp.
280
290
10.1115/1.2919359.
12.
Howell
,
L. L.
, and
Midha
,
A.
,
1996
, “
A Loop-Closure Theory for the Analysis and Synthesis of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
121
125
10.1115/1.2826842.
13.
Midha
,
A.
,
Annamalai
,
Y.
,
Kolachalam
,
S. K.
,
Bapat
,
S. G.
, and
Koli
,
A. B.
,
2013
, “On a Compliant Mechanism Design Methodology Using the Synthesis with Compliance Approach for Coupled and Uncoupled Systems,”
Advances in Mechanisms, Robotics, and Design Education and Research
,
V.
Kumar
,
J.
Schmiedeler
,
S.
Sreenivasan
,
H. J.
Su
, eds.,
Springer
,
Heidelberg
, pp.
95
116
.
14.
Bapat
,
S. G.
,
Midha
,
A.
, and
Koli
,
A. B.
,
2014
, “
On a Generalized Approach for Design of Compliant Mechanisms Using the Pseudo-Rigid-Body Model Concept
,”
Proceedings of the IMECE
,
Montreal, Quebec, Canada
,
Nov. 14–20
,
ASME Paper No. IMECE2014-38788, V014T06A001
, pp.
1
11
.
15.
Midha
,
A.
, and
Bagivalu Prasanna
,
P.
,
2015
, “
Mode Shapes in Compliant Mechanisms and a Procedure to Identify Appropriate Pseudo-Rigid-Body Model Type
,”
Proceedings of the IDETC/CIE
,
Boston, MA
,
Aug. 2–5
,
ASME Paper No. DETC2015-47694, V05AT08A024
, pp.
1
10
.
16.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons, Inc
,
New York, NY
.
17.
Roy
,
S.
, and
Chakrabarty
,
S.
,
2003
,
Fundamentals of Structural Analysis
,
S. Chand and Company Ltd.
,
New Delhi, India
.
18.
Waldron
,
K. J.
, and
Kinzel
,
G. L.
,
2004
,
Kinematics, Dynamics, and Design of Machinery
, 2nd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
19.
Bagivalu Prasanna
,
P.
,
Midha
,
A.
, and
Bapat
,
S. G.
,
2019
, “
Classification of Compliant Mechanisms and Determination of its Degrees of Freedom Using the Concepts of Compliance Number and Pseudo-Rigid-Body Model
,”
Proceedings of the IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
,
ASME Paper No. DETC2019-98522, V05AT07A021
, pp.
1
10
.
20.
Bapat
,
S. G.
,
2015
, “
On the Design and Analysis of Compliant Mechanisms Using the Pseudo-Rigid-Body Model Concept
,”
Ph.D. Dissertation
,
Missouri University of Science and Technology
,
Rolla, MO
.
You do not currently have access to this content.