Abstract

Eigentwists and eigenwrenches capture the stationary stiffness behavior of compliant mechanisms and can be related to a mechanism’s primary kinematic behavior. The nature of concatenation of multiple mechanism building blocks is not well understood. In this paper, we consider the mechanics of concatenation and develop design rules that capture the geometric nature of concatenation in terms of eigenwrenches and eigentwists. The rules are illustrated through mechanisms from the literature and an example design problem. The design rules have potential to provide intelligent guidance for systematic building block synthesis of compliant mechanisms.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
3.
Krishnan
,
G.
,
Kim
,
C.
, and
Kota
,
S.
,
2010
, “
An Intrinsic Geometric Framework for the Building Block Synthesis of Single Point Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011001
. 10.1115/1.4002513
4.
Hopkins
,
J.
, and
Culpepper
,
M.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precision Eng.
,
35
(
4
), pp.
638
649
. 10.1016/j.precisioneng.2011.04.006
5.
Hopkins
,
J.
,
Rivera
,
J.
,
Kim
,
C.
, and
Krishnan
,
G.
,
2015
, “
Synthesis and Analysis of Soft Parallel Robots Comprised of Active Constraints
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011002
.
6.
Shaw
,
L. A.
,
Sun
,
F.
,
Portela
,
C. M.
,
Barranco
,
R. I.
,
Greer
,
J. R.
, and
Hopkins
,
J. B.
,
2019
, “
Computationally Efficient Design of Directionally Compliant Metamaterials
,”
Nat. Commun.
,
10
(
1
), p.
291
. 10.1038/s41467-018-08049-1
7.
Patterson
,
T.
, and
Lipkin
,
H.
,
1993
, “
Structure of Robot Compliance
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
576
580
. 10.1115/1.2919228
8.
Leemans
,
J.
,
Kim
,
C.
,
van de Sande
,
W.
, and
Herder
,
J.
,
2018
, “
Unified Stiffness Characterization of Non-Linear Compliant Shell Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011011
.
9.
Kim
,
C. J.
,
2018
, “
Functional Characterization of Compliant Building Blocks Utilizing Eigentwists and Eigenwrenches
,”
Proceedings of the 2008 ASME International Design Engineering Technical Conferences
,
Aug. 3–6
,
DETC2008-49267
.
10.
van den Bos
,
A.
,
2007
,
Parameter Estimation for Scientists and Engineers
,
John Wiley and Sons
,
New York
.
11.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
, eds.,
2013
,
Handbook of Compliant Mechanisms
,
Wiley
,
New York
.
12.
Toone
,
N.
,
Lund
,
J.
,
Teichert
,
G.
,
Jensen
,
B.
,
Burnett
,
S.
, and
Howell
,
L.
,
2014
, “
Investigation of Unique Carbon Nanotube Cell Restraint Compliant Mechanisms
,”
Mech. Des. Struct. Mach.
,
42
(
3
), pp.
343
354
. 10.1080/15397734.2014.908298
13.
Kooistra
,
H.
,
Kim
,
C. J.
,
van de Sande
,
W. W.
, and
Herder
,
J. L.
,
2019
, “
Shape Optimization Framework for the Path of the Primary Compliance Vector in Compliant Mechanisms
,”
Proceedings of the 2019 ASME International Design Technical Conferences
,
Anaheim, CA
,
Aug. 18–21
.
14.
Seffen
,
K.
,
2012
, “
Compliant Shell Mechanisms
,”
Phil. Trans. R. Soc. A
,
370
(
1965
), pp.
2010
2026
. 10.1098/rsta.2011.0347
15.
Nijssen
,
J.
,
Herder
,
J.
, and
Radaelli
,
G.
,
2018
, “
Spatial Concept Synthesis of Compliant Mechanisms Utilizing Non-Linear Eigentwist Characterization
,”
Proceedings of the 2018 ASME International Design Technical Conferences
,
Quebec City, Canada
,
Aug. 26–29
.
You do not currently have access to this content.