Abstract

This paper extends the kinematic synthesis methodology for designing a chain of bodies to match a set of arbitrary curves to the spatial case. The methodology initiates with an arbitrary set of spatial curves, and concludes with a set of bodies defined by their spatial features. The bodies synthesized can be one of three types: a rigid segment, a helical segment with constant curvature and torsion but varying length, and a growth segment that maintains its geometry but may be scaled to become larger or smaller. To realize mechanical chains for mechanisms that achieve spatial shape change, only rigid and helical segments are used. After designing the segments, they may be aligned with the original spatial curves with their ends connected via an optimization. For two curves, these connections may be made with revolute joints to obtain high accuracy. For three or more curves, spherical joint connections allow for best accuracy. To compare curves as is useful in morphometry, all three segment types may be employed. In this case, an accurate description of the changes between curves is important, and optimizing to connect the segments is not needed. The procedure for redefining the curves in a way that the techniques in this paper may be applied, as well as the methodologies for synthesizing the three segment types are presented. Examples include a continuum robot problem and the morphometric analyses of cochlear curves and the lambdoidal suture located on a human skull. This work extends the established planar techniques for synthesizing mechanisms and addressing morphometric issues that are motivated with curves in two-dimensions.

References

1.
Murray
,
A. P.
,
Schmiedeler
,
J. P.
, and
Korte
,
B. M.
,
2008
, “
Kinematic Synthesis of Planar, Shape-changing Rigid-body Mechanisms
,”
ASME J. Mech. Des.
,
130
(
3
), p.
032302
. 10.1115/1.2829892
2.
Shamsudin
,
S. A.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Schmiedeler
,
J. P.
,
2013
, “
Kinematic Synthesis of Planar, Shape-Changing, Rigid Body Mechanisms for Design Profiles With Significant Differences in Arc Length
,”
Mech. Mach. Theory.
,
70
(
12
), pp.
425
440
. 10.1016/j.mechmachtheory.2013.08.007
3.
Fasel
,
U.
,
Keidel
,
D.
,
Molinari
,
G.
, and
Ermanni
,
P.
,
2019
, “
Aeroservoelastic Optimization of Morphing Airborne Wind Energy Wings
,”
AIAA Scitech Forum and Exposition
,
Orlando, FL
,
Jan. 7–11
, p.
1217
.
4.
Andreutti
,
G.
,
Pecora
,
R.
, and
Cascio
,
M.
,
2018
, “
Preliminary Design Process for An Adaptive Winglet
,”
Int. J. Mech. Eng. Rob. Res.
,
7
(
1
), pp.
83
92
.
5.
Zhao
,
K.
,
Schmiedeler
,
J. P.
, and
Murray
,
A. P.
,
2012
, “
Design of Planar, Shape-Changing Rigid-body Mechanisms for Morphing Aircraft Wings
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041007
. 10.1115/1.4007449
6.
Frank
,
G. J.
,
Joo
,
J. J.
,
Sanders
,
B.
,
Garner
,
D. M.
, and
Murray
,
A. P.
,
2008
, “
Mechanization of a High Aspect Ratio Wing for Aerodynamic Control
,”
J. Intell. Mater. Syst. Struct.
,
19
(
9
), pp.
1101
1112
. 10.1177/1045389X08096734
7.
Mou
,
F.
,
Nejadkhaki
,
H.
,
Estes
,
A.
, and
Hall
,
J.
,
2019
, “
Weighted Least Squares Approach for An Adaptive Aerodynamic Engineered Structure With Twist Transformation
,”
ASME J. Energy. Res. Technol.
,
141
(
5
), p.
051207
. 10.1115/1.4042642
8.
Li
,
B.
,
Myszka
,
D. H.
, and
Murray
,
A.
,
2018
, “
Design and Experimental Assessment of Variable-geometry Dies for Polymer Extrusion
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011701
. 10.1115/1.4038297
9.
Daynes
,
S.
, and
Weaver
,
P.
,
2012
, “
A Morphing Trailing Edge Device for a Wind Turbine
,”
J. Intell. Mater. Syst. Struct.
,
23
(
6
), pp.
691
701
. 10.1177/1045389X12438622
10.
Shao
,
S.
,
Song
,
S.
,
Xu
,
M.
, and
Jiang
,
W.
,
2018
, “
Mechanically Reconfigurable Reflector for Future Smart Space Antenna Application
,”
Smart Mater. Struct.
,
27
(
9
), p.
095014
. 10.1088/1361-665X/aad480
11.
Motzki
,
P.
,
Khelfa
,
F.
,
Zimmer
,
L.
,
Schmidt
,
M.
, and
Seelecke
,
S.
,
2019
, “
Design and Validation of a Reconfigurable Robotic End-effector Based on Shape Memory Alloys
,”
Trans. Mech.
,
24
(
1
), pp.
93
303
.
12.
Alaluf
,
D.
,
Bastaits
,
R.
,
Wang
,
K.
,
Horodinca
,
M.
,
Burda
,
I.
,
Martic
,
G.
, and
Preumont
,
A.
,
2016
, “
Bimorph Mirrors for Adaptive Optics in Space Telescopes
,”
Adaptive Optics Systems V
,
International Society for Optics and Photonics
,
Edinburgh, UK
.
13.
Geiss
,
M.
,
Boddeti
,
N.
,
Weeger
,
O.
,
Maute
,
K.
, and
Dunn
,
M.
,
2019
, “
Combined Level-set-xfem-density Topology Optimization of Four-dimensional Printed Structures Undergoing Large Deformation
,”
ASME J. Mech. Des.
,
141
(
5
), p.
051405
. 10.1115/1.4041945
14.
Yazik
,
M.
, and
Sultan
,
M.
,
2019
, “Shape Memory Polymer and Its Composites As Morphing Materials,”
Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites
, Vol.
1
,
Jawaid
,
M.
,
Thariq
,
M.
, and
Saba
,
N.
, ed.,
Woodhead Publishing
,
Duxford, UK
, pp.
181
198
.
Chap. 9
.
15.
Webster III
,
R.
, and
Jones
,
B.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Rob. Res.
,
29
(
13
), pp.
1661
1683
. 10.1177/0278364910368147
16.
Garriga-Casanovas
,
A.
,
2019
, “
Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011010
. 10.1115/1.4041739
17.
Jones
,
B.
, and
Walker
,
I.
,
2006
, “
Kinematics for Multisection Continuum Robots
,”
Trans. Rob.
,
22
(
1
), pp.
43
55
. 10.1109/TRO.2005.861458
18.
Laschi
,
C.
,
Cianchetti
,
M.
,
Mazzolai
,
B.
,
Margheri
,
L.
,
Follador
,
M.
, and
Dario
,
P.
,
2012
, “
Soft Robot Arm Inspired by the Octopus
,”
Adv. Rob.
,
26
(
7
), pp.
709
727
. 10.1163/156855312X626343
19.
Suzumori
,
K.
,
Iikura
,
S.
, and
Tanaka
,
H.
,
1992
, “
Applying a Flexible Microactuator to Robotic Mechanisms
,”
IEEE Control Syst. Mag.
,
12
(
1
), pp.
21
27
. 10.1109/37.120448
20.
Chirikjian
,
G.
, and
Burdick
,
J.
,
1994
, “
A Modal Approach to Hyper-Redundant Manipulator Kinematics
,”
Trans. Rob. Auto.
,
10
(
3
), pp.
343
354
. 10.1109/70.294209
21.
Neppalli
,
S.
,
Csencsits
,
M.
,
Jones
,
B.
, and
Walker
,
I.
,
2009
, “
Closed-Form Inverse Kinematics for Continuum Manipulators
,”
Adv. Rob.
,
23
(
15
), pp.
2077
2091
. 10.1163/016918609X12529299964101
22.
Trivedi
,
D.
, and
Rahn
,
C.
,
2014
, “
Model-based Shape Estimation for Soft Robotic Manipulators: The Planar Case
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021005
. 10.1115/1.4026338
23.
Xu
,
K.
, and
Simaan
,
N.
,
2010
, “
Analytic Formulation for Kinematics, Statics, and Shape Restoration of Multibackbone Continuum Robots Via Elliptic Integrals
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011006
. 10.1115/1.4000519
24.
Kapadia
,
A.
, and
Walker
,
I.
,
2013
, “
Self-motion Analysis of Extensible Continuum Manipulators
,”
International Conference on Robotics and Automation
,
May 5–10
,
IEEE
,
Silver Spring, MD
, pp.
1988
1994
.
25.
Adams
,
D.
,
Rohlf
,
F.
, and
Slice
,
D. E.
,
2004
, “
Geometric Morphometrics: Ten Years of Progress Following the Revolution
,”
Italian J. Zoology
,
71
(
1
), pp.
5
16
. 10.1080/11250000409356545
26.
Marcus
,
L.
,
1990
, “
Traditional Morphometrics
,”
Proceedings of the Michigan Morphometrics Workshop
,
Ann Arbor, MI
,
May 16–28, 1988
,
University of Michigan Museum of Zoology
, pp.
77–122
.
27.
Li
,
B.
,
Murray
,
A. P.
,
Myszka
,
D. H.
, and
Subsol
,
G.
,
2016
, “
Synthesizing Planar Rigid-body Chains for Morphometric Applications
,”
ASME 2016 International Design Engineering Technical Conferences
,
Charlotte, NC
,
Aug. 21–24
, p.
V05BT07A036
28.
Wen
,
G.
,
Wang
,
Z.
,
Xia
,
S.
, and
Zhu
,
D.
,
2006
, “
Least-Squares Fitting of Multiple M-dimensional Point Sets
,”
Visual Comput.
,
22
(
6
), pp.
387
398
. 10.1007/s00371-006-0022-6
29.
Stahl
,
S.
, and
Stenson
,
C.
,
2014
,
Introduction to Topology and Geometry
,
John Wiley & Sons
,
New York
.
30.
Burchard
,
H.
,
1994
, “Discrete Curves and Curvature Constraints,”
Curves and Surfaces in Geometric Design
, Vol.
1
,
Laurent
,
P. J.
,
Mehaute
,
A. L.
, and
Schumaker
,
L. L.
, eds.,
A. K. Peters Ltd.
,
Wellesley, MA
, pp.
67
74
.
31.
Gioan
,
E.
,
Sol
,
K.
, and
Subsol
,
G.
,
2012
, “
A Combinatorial Method for 3D Landmark-Based Morphometry: Application to the Study of Coronal Craniosynostosis
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
,
Nice, France
,
Oct. 1–5
, pp.
533
541
.
32.
Heuzé
,
Y.
,
Martínez-Abadías
,
N.
,
Stella
,
J.
,
Senders
,
C.
,
Boyadjiev
,
S.
,
Lo
,
L.
, and
Richtsmeier
,
J.
,
2012
, “
Unilateral and Bilateral Expression of a Quantitative Trait: Asymmetry and Symmetry in Coronal Craniosynostosis
,”
J. Exp. Zoology Part B
,
318
(
2
), pp.
109
122
. 10.1002/jezb.21449
33.
Sato
,
H.
,
Sando
,
I.
, and
Takahashi
,
H.
,
1991
, “
Sexual Dimorphism and Development of the Human Cochlea: Computer 3-d Measurement
,”
Acta Oto-laryngol
,
111
(
6
), pp.
1037
1040
. 10.3109/00016489109100753
You do not currently have access to this content.