This paper presents a method for topology optimization of large-deflection compliant mechanisms with multiple inputs and outputs by considering the coupling issue. First, the objectives of the design problem are posed by modeling the output loads using several springs to enable control of the input–output behavior. Second, a scheme is proposed to obtain a completely decoupled mechanism. Both input coupling and output coupling are considered. Third, with the implementation of an energy interpolation scheme to stabilize the numerical simulations, the geometrical nonlinearity is considered to appropriately capture the large displacements of compliant mechanisms. Finally, several numerical examples are presented to demonstrate the validity of the proposed method. Comparison studies with the obtained results without considering the coupling issues are also presented.

References

1.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley & Sons
,
New York
.
2.
Wang
,
R.
, and
Zhang
,
X.
,
2017
, “
Optimal Design of a Planar Parallel 3-DOF Nanopositioner With Multi-Objective
,”
Mech. Mach. Theory
,
112
, pp.
61
83
.
3.
Venkiteswaran
,
V. K.
, and
Su
,
H. J.
,
2016
, “
Extension Effects in Compliant Joints and Pseudo-Rigid-Body Models
,”
ASME J. Mech Des.
,
138
(
9
),
92302
.
4.
Li
,
N.
,
Su
,
H. J.
, and
Zhang
,
X. P.
,
2017
, “
Accuracy Assessment of Pseudo-Rigid-Body Model for Dynamic Analysis of Compliant Mechanisms
,”
J. Mech. Robot.
9
(
5
), p.
054503
.
5.
Wang
,
R.
, and
Zhang
,
X.
,
2018
, “
Parameters Optimization and Experiment of a Planar Parallel 3-DOF Nanopositioning System
,”
IEEE Trans. Ind. Electron.
,
65
(
3
), pp.
2388
2397
.
6.
Hao
,
G.
,
2013
, “
Towards the Design of Monolithic Decoupled XYZ Compliant Parallel Mechanisms for Multi-Function Applications
,”
Mech. Sci.
,
4
(
2
), pp.
291
302
.
7.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Based Des. Struct. Mach.
,
25
(
4
), pp.
493
524
.
8.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
Level Set-Based Topology Optimization of Hinge-Free Compliant Mechanisms Using a Two-Step Elastic Modeling Method
,”
ASME J. Mech. Des.
,
136
(
3
),
31007
.
9.
Zhang
,
X.
,
2015
, “
Bi-Directional Evolutionary Level Set Method for Topology Optimization
,”
Eng. Optimization
,
47
(
3
), pp.
390
406
.
10.
Liu
,
C. H.
,
Huang
,
G. F.
, and
Chen
,
T. L.
,
2017
, “
An Evolutionary Soft-Add Topology Optimization Method for Synthesis of Compliant Mechanisms With Maximum Output Displacement
,”
J. Mech. Robot.
,
9
(
5
),
54502
.
11.
Jin
,
M.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2014
, “
A Numerical Method for Static Analysis of Pseudo-Rigid-Body Model of Compliant Mechanisms
,”
ARCHIVE Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1989–1996 (vols. 203–210)
,
228
(
17
), pp.
3170
3177
.
12.
Liu
,
J.
,
Wen
,
G.
,
Qing
,
Q.
,
Li
,
F.
, and
Xie
,
Y. M.
,
2018
, “
Robust Topology Optimization for Continuum Structures With Random Loads
,”
Eng. Comput.
,
35
(
9
), pp.
710
732
.
13.
Zhang
,
X.
, and
Zhu
,
B.
,
2018
,
Topology Optimization of Compliant Mechanisms
,
Springer
,
Singapore
.
14.
Zhan
,
J.
, and
Zhang
,
X.
,
2011
, “
Topology Optimization of Compliant Mechanisms With Geometrical Nonlinearities Using the Ground Structure Approach
,”
Chin. J. Mech. Eng.
,
24
(
2
), pp.
257
263
.
15.
Du
,
Y.
, and
Chen
,
L.
,
2009
, “
Topology Optimization for Large-displacement Compliant Mechanisms Using Element Free Galerkin Method
,”
Int. J. CAD/CAM
,
8
(
1
), pp.
1
10
.
16.
Saxena
,
A.
,
2005
, “
Topology Design of Large Displacement Compliant Mechanisms With Multiple Materials and Multiple Output Ports
,”
Struct. Multidiscipl. Optim.
,
30
(
6
), pp.
477
490
.
17.
He
,
Q.
,
Kang
,
Z.
, and
Wang
,
Y.
,
2014
, “
A Topology Optimization Method for Geometrically Nonlinear Structures With Meshless Analysis and Independent Density Field Interpolation
,”
Comput. Mech.
,
54
(
3
), pp.
629
644
.
18.
Wang
,
F.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Jensen
,
J. S.
,
2014
, “
Interpolation Scheme for Fictitious Domain Techniques and Topology Optimization of Finite Strain Elastic Problems
,”
Comput. Methods. Appl. Mech. Eng.
,
276
(
7
), pp.
453
472
.
19.
Frecker
,
M.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1999
, “
Topology Optimization of Compliant Mechanisms With Multiple Outputs
,”
Struct. Multidiscipl. Optim.
,
17
(
4
), pp.
269
278
.
20.
Zhu
,
B.
,
Zhang
,
X.
, and
Wang
,
N.
,
2013
, “
Topology Optimization of Hinge-free Compliant Mechanisms With Multiple Outputs Using Level Set Method
,”
Struct. Multidiscipl. Optim.
,
47
, pp.
659
672
.
21.
Li
,
H.
, and
Hao
,
G.
,
2015
, “
A Constraint and Position Identification (CPI) Approach for the Synthesis of Decoupled Spatial Translational Compliant Parallel Manipulators
,”
Mech. Mach. Theory
,
90
, pp.
59
83
.
22.
Hao
,
G.
, and
Xianwen
,
K.
,
2012
, “
Design and Modeling of a Large-Range Modular XYZ Compliant Parallel Manipulator Using Identical Spatial Modules
,”
J. Mech. Robot.
,
4
,
21009
.
23.
Wang
,
H.
, and
Zhang
,
X.
,
2008
, “
Input Coupling Analysis and Optimal Design of a 3-DOF Compliant Micro-Positioning Stage
,”
Mech. Mach. Theory
,
43
(
4
), pp.
400
410
.
24.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Development and Assessment of a Novel Decoupled XY Parallel Micropositioning Platform
,”
IEEE ASME Trans. Mechatron.
,
15
(
1
), pp.
125
135
.
25.
Zhang
,
X.
,
Ouyang
,
G.
, and
Hua
,
W.
,
2007
, “
Topology Optimization of Multiple Inputs and Multiple Outputs Compliant Mechanisms
,”
Chin. J. Mech. Eng.
,
1
(
1
), pp.
82
85
.
26.
Alonso
,
C.
,
Ansola
,
R.
, and
Querin
,
O. M.
,
2014
, “
Topology Synthesis of Multi-Input–Multi-Output Compliant Mechanisms
,”
Adv. Eng. Software
,
76
(
3
), pp.
125–132
.
27.
Zhang
,
X.
,
2006
, “
Topology Optimization of Multiple Inputs and Outputs Compliant Mechanism With Coupling Terms Control (in Chinese)
,”
J. Mech. Eng.
,
42
(
3
), pp.
162
165
.
28.
Zhu
,
B.
,
Chen
,
Q.
,
Jin
,
M.
, and
Zhang
,
X.
,
2018
, “
Design of Fully Decoupled Compliant Mechanisms With Multiple Degrees of Freedom using Topology Optimization
,”
Mech. Mach. Theory
,
126
, pp.
413
428
.
29.
Bendsoe
,
M. P
,
2004
,
Topology Optimization: Theory, Methods, and Applications
, 2nd ed.,
Springer
,
New York
.
30.
Rozvany
,
G. I. N.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
37
(
3
), pp.
217
237
.
31.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
33
(
4–5
), pp.
401
424
.
32.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods. Appl. Mech. Eng.
,
190
(
26
), pp.
3443
3459
.
33.
Zhu
,
B.
,
Zhang
,
X.
, and
Fatikow
,
S.
,
2014
, “
A Multi-Objective Method of Hinge-Free Compliant Mechanism Optimization
,”
Struct. Multidiscipl. Optim.
,
49
(
3
), pp.
431
440
.
34.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Topology Optimization of Fusiform Muscles With a Maximum Contraction
,”
Int. J. Numer. Method. Biomed. Eng.
,
34
,
e3096
.
35.
Zhou
,
M.
,
Lazarov
,
B. S.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2015
, “
Minimum Length Scale in Topology Optimization by Geometric Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
266
282
.
You do not currently have access to this content.