In this work, a new parallel manipulator with multiple operation modes is introduced. The proposed robot is based on a three-degrees-of-freedom (3DOF) parallel manipulator endowed with a three-dof central kinematic chain, where by blocking some specific kinematic pairs, the robot can modify its mobility. Hence, the robot manipulator is able to assume the role of a limited-dof or a nonredundant parallel manipulator. Without loss of generality, the instantaneous kinematics of one member of the family of parallel manipulators generated by the reconfigurable parallel manipulator, the three-RPRRC + RRPRU nonredundant parallel manipulator with decoupled motions, is approached by means of the theory of screws. For the sake of completeness, the finite kinematics of the robot is also investigated. Numerical examples are included with the purpose to clarify the method of kinematic analysis.

References

1.
Plessis
,
L. J.
, and
Snyman
,
J.
,
2006
, “
An Optimally Reconfigurable Planar Gough-Stewart Machining Platform
,”
Mech. Mach. Theory
,
41
(
3
), pp.
334
357
.
2.
Balmaceda-Santamaría
,
A. L.
,
Castillo-Castaneda
,
E.
, and
Gallardo-Alvarado
,
J.
, 2016, “
A Novel Reconfiguration Strategy of a Delta-Type Parallel Manipulator
,”
Int. J. Adv. Robot. Syst.
,
13
(15), pp. 1–11.
3.
Kuo
,
C.-H.
,
Dai
,
J. S.
, and
Yan
,
H. S.
,
2009
, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms
,”
ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
(
ReMAR 2009
), London, June 22–24, pp. 1–7.https://ieeexplore.ieee.org/document/5173802/
4.
Ibarreche
,
J. I.
,
Hernandez
,
A.
,
Petuya
,
V.
,
Urizar
,
M.
, and
Macho
,
E.
,
2017
, “
Multioperation Capacity of Parallel Manipulators Basing on Generic Kinematic Chain Approach
,”
Mech. Mach. Theory
,
116
, pp.
234
247
.
5.
Tsai
,
L.-W.
, and
Joshi
,
S.
,
1999
, “
Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
439
446
.
6.
Di Gregorio
,
R.
, and
Parenti-Castelli
,
V.
,
2002
, “
Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
259
264
.
7.
Hu
,
B.
, and
Lu
,
Y.
,
2011
, “
Solving Stiffness and Deformation of a 3-UPU Parallel Manipulator With One Translation and Two Rotations
,”
Robotica
,
29
(
6
), pp.
815
822
.
8.
Hu
,
B.
,
Yao
,
Y.
,
Wu
,
P.
, and
Lu
,
Y.
,
2013
, “
A Comparison Study of Two 3-UPU Translational Parallel Manipulators
,”
Int. J. Adv. Rob. Syst.
,
10
(
4
), pp.
1
9
.
9.
Chebbi
,
A. H.
,
Affi
,
Z.
, and
Romdhane
,
L.
,
2013
, “
Modelling and Analysis of the 3-UPU Spherical Manipulator
,”
Eur. J. Comp. Mech.
,
22
(
2–4
), pp.
157
169
.
10.
Choi
,
J.-K.
,
Mori
,
O.
, and
Omata
,
T.
,
2004
, “
Dynamic and Stable Reconfiguration of Self-Reconfigurable Planar Parallel Robots
,”
Adv. Rob.
,
18
(
6
), pp.
565
582
.
11.
Dash
,
A. K.
,
Chen
,
I.-M.
,
Yeo
,
S.-H.
, and
Yang
,
G.
,
2005
, “
Taskoriented Configuration for Reconfigurable Parallel Manipulator Systems
,”
Int. J. Comput. Integr. Manuf.
,
18
(
7
), pp.
615
634
.
12.
Bi
,
Z. M.
, and
Wang
,
L.
,
2009
, “
Optimal Design of Reconfigurable Parallel Machining Systems
,”
Rob. Comput. Integr. Manuf.
,
25
(
6
), pp.
951
961
.
13.
Plitea
,
N.
,
Lese
,
D.
,
Pisla
,
D.
, and
Vaida
,
C.
,
2013
, “
Structural Design and Kinematics of a New Parallel Reconfigurable Robot
,”
Rob. Comput. Integr. Manuf.
,
29
(
1
), pp.
219
235
.
14.
Moosavian
,
A.
, and
Xi
,
F.
,
2014
, “
Design and Analysis of Reconfigurable Parallel Robots With Enhanced Stiffness
,”
Mech. Mach. Theory
,
77
, pp.
92
110
.
15.
Kong
,
X.
,
Yu
,
J.
, and
Li
,
D.
,
2015
, “
Reconfiguration Analysis of a Two Degrees-of-Freedom 3-4R Parallel Manipulator With Planar Base and Platform1
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011019
.
16.
Coppola
,
G.
,
Zhang
,
D.
, and
Liu
,
K.
,
2014
, “
A New Class of Adaptive Parallel Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041013
.
17.
Ye
,
W.
,
Fang
,
Y.
,
Zhang
,
K.
, and
Guo
,
S.
,
2016
, “
Mobility Variation of a Family of Metamorphic Parallel Mechanisms With Reconfigurable Hybrid Limbs
,”
Rob. Comput. Integr. Manuf.
,
41
, pp.
145
162
.
18.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L. D.
,
2016
, “
Variable Motion/Force Transmissibility of a Metamorphic Parallel Mechanism With Reconfigurable 3T and 3R Motion
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051001
.
19.
Kong
,
X.
,
2017
, “
Reconfiguration Analysis of Multimode Single-Loop Spatial Mechanisms Using Dual Quaternions
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051002
.
20.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
, New York.
21.
Sommese
,
A.-J.
, and
Wampler
,
C.-W.
, II
,
2006
,
The Numerical Solution of System of Polynomial Arising in Engineering and Science
,
World Scientific Publishing
, Singapore.
22.
Gallardo-Alvarado
,
J.
,
Rodriguez-Castro
,
R.
, and
Islam
,
M. N.
,
2008
, “
Analytical Solution of the Forward Position Analysis of Parallel Manipulators That Generate 3-RS Structures
,”
Adv. Rob.
,
22
(
2–3
), pp.
215
234
.
23.
Lichtblau
,
D.
,
2016
, “
First Order Perturbation and Local Stability of Parametrized Systems
,”
Math. Comput. Sci.
,
10
(
1
), pp.
143
163
.
24.
Gallardo-Alvarado
,
J.
,
Abedinnasab
,
M. H.
, and
Lichtblau
,
D.
,
2016
, “
Simplified Kinematics for a Parallel Manipulator Generator of the Schönflies Motion
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061020
.
25.
Gallardo-Alvarado
,
J.
,
2016
,
Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory
,
Springer International Publishing
, New York.
You do not currently have access to this content.