Abstract

Flourished wind energy market pushes the latest wind turbines (WTs) to further and harsher inland and offshore environment. Increased operation and maintenance cost calls for more reliable and cost effective condition monitoring systems. In this article, a bi-level condition monitoring framework for interturn short-circuit faults (ITSCFs) in WT generators is proposed. A benchmark dataset, consisting of 75 ITSCF scenarios and generator current signals of a specific WT, has been created and made publicly available on Zenodo. The data are simulated at a rate of 4 kHz. Based on the time and frequency features extracted from data processing, machine learning-based severity estimation and faulty phase identification modules can provide valuable diagnostic information for wind farm operators. Specifically, the performance of long short-term memory (LSTM) networks, gated recurrent unit (GRU) networks, and convolutional neural networks (CNNs) are analyzed and compared for severity estimation and faulty phase identification. For test-bed experimental reference, various numbers of scenarios for training the models are analyzed. Numerical experiments demonstrate the computational efficiency and robust denoising capability of the CNN algorithm. The GRU network, however, achieves the highest accuracy. The overall system performance improves significantly, from 87.76% with 16 training scenarios to 99.95% with 52 training scenarios, when tested on a set containing all 76 scenarios from an unforeseen period.

References

1.
Wiser
,
R.
,
Bolinger
,
M.
,
Hoen
,
B.
,
Millstein
,
D.
,
Rand
,
J.
,
Barbose
,
G.
,
Darghouth
,
N.
,
Gorman
,
W.
,
Jeong
,
S.
,
O’Shaughnessy
,
E.
, and
Paulos
,
B.
,
2023
, “Land-Based Wind Market Report: 2023 Edition.” Tech. Rep., the U.S. Department of Energy. https://www.energy.gov/sites/default/files/2023-08/land-based-wind-market-report-2023-edition.pdf.
2.
Qiao
,
W.
, and
Lu
,
D.
,
2015
, “
A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part I: Components and Subsystems
,”
IEEE. Trans. Ind. Electron.
,
62
(
10
), pp.
6536
6545
.
3.
Badihi
,
H.
,
Zhang
,
Y.
,
Jiang
,
B.
,
Pillay
,
P.
, and
Rakheja
,
S.
,
2022
, “
A Comprehensive Review on Signal-Based and Model-Based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis
,”
Proc. IEEE
,
110
(
6
), pp.
754
806
.
4.
Liu
,
X.
, and
Wang
,
P.
,
2022
, “
Valuation of Continuous Monitoring Systems for Engineering System Design in Recurrent Maintenance Decision Scenarios
,”
ASME J. Mech. Des.
,
144
(
9
), p.
091702
.
5.
Liu
,
X.
,
Ghosh
,
S.
,
Liu
,
Y.
, and
Wang
,
P.
,
2022
, “
Towards Integrated Design and Operation of Complex Engineering Systems With Predictive Modeling: State-of-the-Art and Challenges
,”
ASME J. Mech. Des.
,
144
(
9
), p.
090801
.
6.
Attallah
,
O.
,
Ibrahim
,
R. A.
, and
Zakzouk
,
N. E.
,
2023
, “
CAD System for Inter-Turn Fault Diagnosis of Offshore Wind Turbines Via Multi-CNNs & Feature Selection
,”
Renew. Energy
,
203
, pp.
870
880
.
7.
Dao
,
C.
,
Kazemtabrizi
,
B.
, and
Crabtree
,
C.
,
2019
, “
Wind Turbine Reliability Data Review and Impacts on Levelised Cost of Energy
,”
Wind Energy
,
22
(
12
), pp.
1848
1871
.
8.
Hamatwi
,
E.
, and
Barendse
,
P.
,
2020
, “
Condition Monitoring and Fault Diagnosis of Stator and Rotor Interturn Winding Faults in a DFIG-based Wind Turbine System: A Review
,”
2020 International SAUPEC/RobMech/PRASA Conference
,
Cape Town, South Africa
,
Jan. 29–31
, pp.
1
6
.
9.
Abad
,
G.
,
López
,
J.
,
Rodríguez
,
M.
,
Marroyo
,
L.
, and
Iwanski
,
G.
,
2011
,
Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
10.
Çira
,
F.
,
Arkan
,
M.
, and
Gümüş
,
B.
,
2015
, “
A New Approach to Detect Stator Fault in Permanent Magnet Synchronous Motors
,”
2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)
,
Guarda, Portugal
,
Sept. 1–4
, pp.
316
321
.
11.
Mirzaeva
,
G.
, and
Saad
,
K. I.
,
2018
, “
Advanced Diagnosis of Stator Turn-to-Turn Faults and Static Eccentricity in Induction Motors Based on Internal Flux Measurement
,”
IEEE. Trans. Ind. Appl.
,
54
(
4
), pp.
3961
3970
.
12.
Khowja
,
M. R.
,
Turabee
,
G.
,
Giangrande
,
P.
,
Madonna
,
V.
,
Cosma
,
G.
,
Vakil
,
G.
,
Gerada
,
C.
, and
Galea
,
M.
,
2021
, “
Lifetime Estimation of Enameled Wires Under Accelerated Thermal Aging Using Curve Fitting Methods
,”
IEEE Access
,
9
, pp.
18993
19003
.
13.
Lei
,
Y.
,
Yang
,
B.
,
Jiang
,
X.
,
Jia
,
F.
,
Li
,
N.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Signal. Process.
,
138
, p.
106587
.
14.
Qiao
,
W.
, and
Lu
,
D.
,
2015
, “
A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part II: Signals and Signal Processing Methods
,”
IEEE. Trans. Ind. Electron.
,
62
(
10
), pp.
6546
6557
.
15.
Meyer
,
A.
,
2021
, “
Multi-Target Normal Behaviour Models for Wind Farm Condition Monitoring
,”
Appl. Energy.
,
300
, p.
117342
.
16.
Jin
,
X.
,
Xu
,
Z.
, and
Qiao
,
W.
,
2021
, “
Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis
,”
IEEE Trans. Sustainable Energy
,
12
(
1
), pp.
202
210
.
17.
Yang
,
L.
, and
Zhang
,
Z.
,
2021
, “
Wind Turbine Gearbox Failure Detection Based on SCADA Data: A Deep Learning-Based Approach
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
11
.
18.
Xiang
,
L.
,
Wang
,
P.
,
Yang
,
X.
,
Hu
,
A.
, and
Su
,
H.
,
2021
, “
Fault Detection of Wind Turbine Based on SCADA Data Analysis Using CNN and LSTM With Attention Mechanism
,”
Measurement
,
175
, p.
109094
.
19.
Liu
,
X.
,
Du
,
J.
, and
Ye
,
Z.-S.
,
2022
, “
A Condition Monitoring and Fault Isolation System for Wind Turbine Based on SCADA Data
,”
IEEE Trans. Ind. Inf.
,
18
(
2
), pp.
986
995
.
20.
Zappalá
,
D.
,
Sarma
,
N.
,
Djurović
,
S.
,
Crabtree
,
C.
,
Mohammad
,
A.
, and
Tavner
,
P.
,
2019
, “
Electrical & Mechanical Diagnostic Indicators of Wind Turbine Induction Generator Rotor Faults
,”
Renewable Energy
,
131
, pp.
14
24
.
21.
Artigao
,
E.
,
Honrubia-Escribano
,
A.
, and
Gomez-Lazaro
,
E.
,
2018
, “
Current Signature Analysis to Monitor DFIG Wind Turbine Generators: A Case Study
,”
Renewable Energy
,
116
(
Part B
), pp.
5
14
.
22.
Ur Rehman
,
A.
,
Chen
,
Y.
,
Huang
,
G.
,
Yang
,
Y.
,
Wang
,
S.
,
Zhao
,
Y.
,
Zhao
,
Y.
,
Cheng
,
Y.
, and
Tanaka
,
T.
,
2020
, “
Stator Inter-Turns Short Circuit Fault Detection in DFIG Using Empirical Mode Decomposition Method on Leakage Flux
,”
2020 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD)
,
Xi'an, China
,
Oct. 15–17
, pp.
184
187
.
23.
Öner
,
M. Ü.
,
Şahin
,
İ
, and
Keysan
,
O.
,
2022
, “
Inter-turn Short Circuit Fault (ISCF) Detection (v1.0.0)
,”
Zenodo
.
24.
Öner
,
M.Ü.
,
Şahin
,
İ
, and
Keysan
,
O.
,
2023
, “
Neural Networks Detect Inter-Turn Short Circuit Faults Using Inverter Switching Statistics for a Closed-Loop Controlled Motor Drive
,”
IEEE Trans. Energy Conversion
,
38
(
4
), pp.
2387
2395
.
25.
Cunha
,
R. G. C.
,
da Silva Junior
,
E. T.
, and
de Sá Medeiros
,
C. M.
,
2021
, “Inter-Turn Short-Circuit in Induction Motor,” http://dx.doi.orrg/10.34740/KAGGLE/DSV/1885987
26.
Najafi
,
M.
,
da Silva Junior
,
Y.
, and
Mirimani
,
S. M.
,
2021
, “Thermal Image of Equipment (Induction Motor), ”
Mendeley Data, V2
.
27.
Jung
,
W.
,
Yun
,
S.
,
Lim
,
Y. -S.
,
Cheong
,
S.
, and
Park
,
Y. -H.
,
2021
, “Vibration and Current Dataset of Three-Phase Permanent Magnet Synchronous Motors with Stator Faults, ”
Mendeley Data, V2
.
28.
Jung
,
W.
,
Yun
,
S.
,
Lim
,
Y. -S.
,
Cheong
,
S.
, and
Park
,
Y. -H.
,
2018
, “
Vibration and Current Dataset of Three-Phase Permanent Magnet Synchronous Motors With Stator Faults
,”
Data Brief
,
47
, p.
108952
.
29.
30.
Senemmar
,
S.
, and
Zhang
,
J.
,
2021
, “
Deep Learning-Based Fault Detection, Classification, and Locating in Shipboard Power Systems
,”
2021 IEEE Electric Ship Technologies Symposium (ESTS)
,
Arlington, VA
,
Aug. 3–6
, IEEE, pp.
1
6
.
31.
Jacob
,
R. A.
,
Senemmar
,
S.
, and
Zhang
,
J.
,
2021
, “
Fault Diagnostics in Shipboard Power Systems Using Graph Neural Networks
,”
2021 IEEE 13th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)
,
Dallas, TX
,
Aug. 22—25
, Vol. 1, pp.
316
321
.
32.
Senemmar
,
S.
, and
Zhang
,
J.
,
2022
, “
Non-Intrusive Load Monitoring in MVDC Shipboard Power Systems Using Wavelet-Convolutional Neural Networks
,”
2022 IEEE Texas Power and Energy Conference (TPEC)
,
College Station, TX
,
Apr. 14
, pp.
1
6
.
33.
Yan
,
J.
,
Senemmar
,
S.
, and
Zhang
,
J.
,
2024
, “
Inter-Turn Short Circuit Fault Diagnosis and Severity Estimation for Wind Turbine Generators
,” Journal of Physics: Conference Series, Vol.
2767
,
IOP Publishing
, p.
032021
.
34.
Senemmar
,
S.
,
Jacob
,
R. A.
, and
Zhang
,
J.
,
2024
, “
Non-Intrusive Fault Detection in Shipboard Power Systems Using Wavelet Graph Neural Networks
,”
Meas. Energy
,
3
, p.
100009
.
35.
Senemmar
,
S.
, and
Zhang
,
J.
,
2024
, “
Wavelet-Based Convolutional Neural Network for Non-Intrusive Load Monitoring of Next Generation Shipboard Power Systems
,”
Meas. Sensor
,
35
, p.
101298
.
36.
Yan
,
J.
,
Senemmar
,
S.
, and
Zhang
,
J.
,
2024
, “Simulated Inter-turn Short Circuit Faults in Wind Turbine Generator Stators: A Benchmark Dataset.” doi:.
37.
UTD, 2024. UTD-DOES/WT-ITSCF-Benchmark. https://github.com/UTD-DOES/WT-ITSCF-Benchmark.
38.
Yang
,
S.
,
Yu
,
X.
, and
Zhou
,
Y.
,
2020
, “
LSTM and GRU Neural Network Performance Comparison Study: Taking Yelp Review Dataset as an Example
,”
2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)
,
Shanghai, China
,
Oct. 13
, pp.
98
101
.
39.
Hossin
,
M.
, and
Sulaiman
,
M. N.
,
2015
, “
A Review on Evaluation Metrics for Data Classification Evaluations
,”
Int. J. Data Mining Knowl. Manage. Process
,
5
(
2
), pp.
01
11
.
40.
Ilesanmi
,
A. E.
, and
Ilesanmi
,
T. O.
,
2021
, “
Methods for Image Denoising Using Convolutional Neural Network: A Review
,”
Complex Intell. Syst.
,
7
(
5
), pp.
2179
2198
.
You do not currently have access to this content.